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SM1 Rationale for selection of species, sex, tissue sources, and bird collection

details

Erich D JarvisM. Thomas PGilbert, Guojie Zhang, Jason Howathn Fjeldsa, Knud Andreas

Jansson, Ludog Orlando, Mads Bertelsen, MichaBunce, Frank Keith Barker, Frederick

Shel don, Eli zabeth Derryberry, St Klaud Koepfli,Od Br i e
Warren JohnsorReter HoudeScott Edwards, Joel Cracraft, Gary Graves.

In mid-2010 we brought together four research consortiavilea¢ engaged in planning to, or
active in sequencingof avian and reptile genome3able S1 column C): 1) Individuals
sequencing a genome at their own institutidrayian genomg the budgerigar and bald eagle,
led by Jarvis and Warren, and Hoatzin by Houde; and the alligator by ®a&gm@and Brauh 2)
individuals collaborating with BGbn speciespecific genome project8 avian genomes; and
the green sea turtlgenome]; 3) the genome ,000 (G10K) groupvho werecollaborating with
BGI to produce a set of 101 high quality vertebrate genoofestich 11 wereavian genomes
including the hoatzip (http://Idl.genomics.org.cn/page/bgiOk.jsy and with the National
Institutes of Healthio sequence the bald eagle genome at Washington University; ampictip
based at the Natural History Museum @énmark (Copenhagergollaborating with BGI to
sequence avian genomes for the purpose of resoNemavianphylogeny [25 low coverage
avian genomes]. At the time of merging efforts, each group (particularly the -8G0Kand
CopenhageBGI collaborations)modified their list of species until we had at least one species
per order of Neognathg86, 37 and two Palaeognathaedersas defined in the Internantional
Ornithology Congress (IOC) list in 201¥ersion 2.10 generated on 201@20 (103). The
inclusion of multiple species for specific orders enabled the targetingrgbhylogeny based
guestionghat specific collaborators wishedaddress.

We sequenced or obtained the genome sequences of one specieskobearctvaterbird
order (except sequence?i penguinsand did not obtain a stork) thaere thought to belong to
separate orders. In the interithe Howard and Moore 2013 classification of birds wablished
(36, 37, where theygrouped 4 of the 10 Neoaves waterbird orders into one, which theg calle
PelecaniformesHigs. 1, S1). This makes it appear as if this part of the treeves-represented
with waterbirds fromPelecaniformeswhenin fact our sampling covers a representative of each
of the problematic lineages believed by some to make the traditionally defined orders non
monophyletic.Given the relatively ancierdivergencs of these waterbird lineagdsefore 50
MYA, comparable tohe divergence time foa number ofothe orders, they mayleserve
reclassification aseparate order However, doing so would requiaelditional taxa samplinop
this part of the tree tbe more certain

For the G10Kspecies selection, additional critemeluded: 1) thathe speciess studied
by a weltestablished biological community; 2) can be used in biological applications for science,
comparative medicine or society; 3) the spetses popular image, recognition or utility (e.qg.
domesticated spexs, conservation targets, national animals, wildlife icons); and 4) thers exist
an explicit scientific value in studying the selected species historically and for the future

In terms ofspecific scientific questia one we focused on was choosisgecis to
answer questions agenetics ofvocal learningVocal learning is a critical behavior for spoken
language in humans and only a few rare groups of birds have vocal learning behavior and the
neural circuitry for it(38). Thus we chose representative species of the threekmaiin vocal
learning lineagegoscine songbirds, parrots, and hummingbirds) and theiestiosocal non
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learning relativesaccordingto phylogenies from different sourc€ks, 17, 18, 24, 26, 29, 38,
39). Although Hackett et al 200817) for the first time brought togethd?sittaciformesand
Passeriformes as sisters, the support wetaively weak (77%)compared to the support we
obtained Moreover, they did not mention theplications for the evolution of vocal learning.
After we sequenced the selected specksh et al 2011(29) used TEs to support this
relationshipand interpretedhe findings for understanding the evolution otablearning, but
there were a number of polytomies in their tneich did not resolve the position of
hummingbirds Several other recent nuclear gene stu(Rés27) also supported Psittaciformes
Passeriformesnonophyly but mntemporaneous morphologicahd mitochondrial phylogenies
rejected thigelationship(14, 15, 18. We also generated genome sequences of some species for
branches that would break up deep nodes in the Caprimulgif¢ait@sd and potoo genogas)
discoverednidway through the project anildat would also contribute to questionsarigins of
vocal learning Thesequencing and assembly of these genomes were conductedBrgizti@n
consortium part of our collaboration, although these werearapteted in time to be included in
the current study. They will be included in future investigations.

In terms of choosinwhich sex to sequence, different groups had different rationales. The
G10K group and individual collaborators with BGhose to sequee mostly malebased on
advice from those that had sequenced the chicken genome, where it was difficult to assemble the
sex chromosomes in the heterogameotic (ZW) female; males in birds are homogametic (ZZ). In
contrast, for the dataset predominantlyeasisled by the Copenhagen collaboration, we chose to
focus on females, in case new computational tools would allow us to assemble the sex
chromosomes and study sex chromosome evolution. The result was that of the 45 new genomes,
21 were female. As hoped, wleveloped a new computational analysis tool for sex chromosome
assembly and analyses of females and were able to generate novel findings on sex chromosome
evolution in a companion stu@$04).

In summary, the final collection of avian genomes in this collaboration was 48 species
(44), including the three previously published genomes of chicken, turkey and zebra finch. In
Table S1 we list the tissue sourcespurce IDs, the persons and institutes responsible for the
collection and DNA processing, and some information about each animal.

SM2 ldentification and annotation of total evidence nucleotide and whole

genome datasets
Bo Li, Erich D. Jarvis, Cai Li, Gy® Zhang, Brant C. Faircloth, Claudio Mello

We initially made several attempts to identify a total evidence nucleotide dataset useful for
phylogenomic inference across the selected taxa using a host of standard tools, including
TreeFam, dN/dS distaas, and reciprocal BLAST. Theswere unsuccessful in identifying
sufficient numbers of accurate orthologs across the taxa under Shelgommon problem was
either that paralogs were observed to be annotated as orthologs or differenofedibfesent

splice variantswere being pullednto the annotated gené&®m different species, although all
specieshad all exons represented in the scaffolds or raw reads. This problem was contributed in
part by the prexisting chickenv3 and zebra finchvl genome annotains which had
inconsistenciewith each other (some exons includedane species, but not the other
paralogs incorrectly identified as orthologs) and the annotation metverdsot ideal. We also
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tried to use tnscriptome data representing (®5 of the 48 bird species, but found that

different splice vaants from different species causatifferences in annotations. Thus, the
objective of the annotatiortisemes below was to generate a more unif@fierence chicken and

zebra finchgene set utilizing human sequenaasdthen propagate those annotations to thero

46 species This means that the annotations will change relativehéopreviously published
genomesPart of this process is also described in our companion comparative genomics paper
(44), as we used this annotated set for comparative analyses. Missing from many of the protein
codnggene annotations are 56 and 306 UTRs, as we
coding sequence only.

8251 protein-coding exon gene set

We started with the homologyased predicted 13,048,000 protein coding genes for all
species reported in ouompanionstudy (44), which was bask on sequence identity to the
chicken, zebra finch, and human genonteghat annotation pipeline, a large reference gene set
of exons (predicted transcripts) from the three reference species was created, here of which we
used 12,484 putative orthologsnsisting of 7,832 zebra finch and 4,652 chicken genes present
in both species. The difference in the choice of species to use for a specific reference gene was
based on which one (chicken or zebra finch) had the most complete annotated gene model.

We usedhis reference set to make tbkicken and zebra finchnnotations more uniform
across the two speciesor chicken,the 7,832 zebra finch_ ORTH proteins were used as
reference genes to run Genewise teamaotate the corresponding orthologs in dgcken
genome For each orthologous gene pair, we used thgredicted gene model to replace the
chicken Ensembl gene modd&lonversely,the 4,652 chicken_ORTHbroteins were useds
reference genes to -emnotate the corresponding orthologs in zebra finch, with same
procedure as that applied on chicken.

We found that several exons had overlapping coordinates in the chicken or zebra finch
genomes and removed them, because counting the same sequence twice in phylogenomic
analyses would bias the results. Wenaisanually curated the protein coding genes that had the
highest dN/dS values > 1 (~40 genes) among all birds, and found that several of them consisted
solely of misannoted short exons without a start codon and in the antisense orientation to a
protein caling exon or in intronic regions of a longer validated protein coding gene. We thus
removed themThis filtering step reduced the number of orthologs from 8295 to 8251.

Next, we developed and used twoethod to selecmong the putativerthologous genes
those that were clearly syntentic between zebra finch and chicken, and took the union of the two.
For thefirst method we used protein sequence alignments, and for the second we used the whole
genome alignment to chicken, kdiig pair-wise orthologs betwan chicken androther species
(47 avian and 4 outgroup species).

1) Protein sequence alignmeh¥e aligned protein sequences of th® gene setto each
other by BLASTP with a Evalue cutoff of 1e5, and combinal local alignmerg with the
SOLAR program(106) (download fromhttp://treesoft.svn.sourceforge.net/viewrc/treesof/e
filtered out those candidatethologswith homologous block lengthsf < 30% of length othe
longestprotein.In addition we filteredut candidateorthologs with identity < 50%.

2) Besthit orthologs We firstidentified reciprocal best hit (RBH) orthologs in all aligned
gene pairs by usinthe sameverage coverage rat{80%)andsequencédentity (50%) cutoffs.



To save candidate odlogs from the strict RBH method, weentified RBH orthologs for the
second and third round by maskikigownRBH genes.

3) Gene synteny orthologg/e placed bestit gene pairs otheir chromosomesccording
to chicken, and sorted theim order.One bestit gene pair (AA,; 1 and 2 denote chicken and
another species) and its nearest dsgene pair (BB,) were considered to have syntenic
evidence if they met the following requirements : a) genes Al and B1 are on same chromosome
or scaffold; b) genes Aand B2 are on same chromosome or scaffold; c) the number of genes
between Al and B1 < 5; d) the number of genes between A2 and B&/& &iso retained best
hit gene pair if one of their scaffolds only has one gene.

4) Candidate syntenic gene palrasedon genomic syntenyWe placed coding regions i
genomicsyntenic blocks (Net files with AXT formdtom pairwise genome alignmestietween
chicken and another spedieglentified syntenic gene pairs, and calculated gersynteny ratio
for each gene (syenyregionlength/totalcodingregionlength) and syntenic ratio (syntenic
length of the two genes/length of the shorter gene). We filtered out syntenic gene pairs with
genein-synteny ratio < 0.3 or syntenic ratio < 0.3.

5) Candidate syntenic gene pdiiltering: In thewhole genome alignment (WGAQ query
may align onto more than onedat genomic loci by using LAST4n this condition, a gene in
target genome W have more than one ortholdguch as AB and AC; A, B, and C denote genes)
by using stp 4 above. We firstly generated spec@scken syntenic gene pairs from species
chicken WGA and used this syntenic ortholog set to determine which gene pair is real. We
furthermore removed syntenic gene pairs vgitlicter cut offs gyntenic ratio < 0.pbwherewe
can filter out a ¢ eHnall§, sve renaoled all gengsnwitherevthaooner t h o |
syntenic ortholog

6) Final orthologsWe buik pair-wise orthologs betweethe chicken gene set and one gene
set ofeachother species (47 avian addoutgroup specied)y retaining orthologsupportedoy
proteinsimilarity (steps 1 and 2jyenesynteny(step 3),and genome synter(gteps 4 and 5)NVe
then constructed the orthologous gerwsthe 52 speciethrough merging paiwise orthologs
accordirg to the referencechicken geneset The final result was that th&2,484 putative
orthologs were reduced to a higher quality ortholog8®51 syntenic set of protein coding
genes.

2516 irtron gene set
We generated conserved orthologous intfoos the 8251 protein coding geneamong the 52
species usinthefollowing steps:

1) Determining exon/intron boundaries wiBeneWise From thepair-wise syntenybased
orthologousexonsequence alignments of tB251genes, we extractdtie intronic regions and
2000bp upstreanand downstream. The extracted sequeraed corresponding chicken protein
sequencewereapplied toGeneWisg40) to generateexortintron boundaries and gene models.
The introns with conserved examiron boundaries between chicken and anofpacies(+1
codon) were chosen as candidate-pase orthologous introns.

2) Filtering out introns with different boundaries and sequence lengesiemovedpair-
wise orthologous introngn which another specie@ot chicken)had adifferent gene model
generated byhe syntenybased patwise orthologousnethod abovendthe Genewisgrotein
coding gene predictions. We also filtered out insrevith length < 50bp or intron ratio > 1.5
between chicken armhotherspecies oanotherspecies and chicken
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3) Merging We merged pair-wise orthologus introns according tothe referencehicken
geneset which resulted irconcatenatedhtron sequence of 2516 genfesm the 8251 protein
coding gene set.

3679UCE locus t

To create a large set of unique UCE regions, we combined UCE loci previously identified as
conserved among vertebratd®7, 108, removed duplicate and reciprocal dupte loci from

the candidate segnd desiged sequence capture probes (120fart)in silico capture of these

loci (108. We aligned sequence captumlpes to each avian genome assembly using a parallel
wrapper aroundlASTZ (109, 110 (Appendix A). We searchedach gene assemidfigr shorter

probe sequencegesigned from UCE loci rather thdhe entire length of ech UCE locugo
standardize the specificity of search parameters across probes (which are identical lengths)
versus UCE loci (which are different lengths), increase the number of loci detected, and facilitate
detection and removal of duplicated or palyiduplicated UCE loci (see below).

Based upon match coordinates returned ft&8TZ, we sliced each UCE probe position
at+ 1000 bp of flanking sequence from individual genome assen{ddesWhere we recovered
slices derived from multiple probes targeting the same locus, sassembledequences back
into full UCE loci usingcode assemble_contigs_from_genome$.pythe PHYLUCE package
(v1.0; https://gitmb.com/fairclothlab/PHYLUCE). During the reassembly process, we also
removed contigs hit by probes designed from different UCEdsavell as contigs matching the
source UCE loci from which we desighgrobes having multiple hitsAt the end of the
reassembly ahlocusassignment process, we used another cgele ihatch_counts.pyo create
a relational database of UCE loci we iddaetifin each genome assembly. We used the relational
database to generate a complete data matrix (no missing taxa) of UCE loci shared among all
avian genome assemblies, and we generated a FASTA file containing sequence data for all UCE
loci in the completelata matrix.

UCE loci are sometimes located in proximate clusfgid) such that reasonablgng
sequence slices centered on proximate UCEs may overlap, while the core, conserved regions of
individual UCE loci do not. Compactness of avian genomes({dg® for review) may increase
the proximity of UCEs and, as a result, the count of UCEs within clusters. To identify and
remove these clusters, wegaled chicken UCE loci in the complete data matrix to the chicken
reference assembly (UCSC galGd, downloaded June 6, 2012sing LASTZ, converted
LASTZ match coordinates to BED format, and identified UCE loci with overlapping flanks
using BEDITOOLS (113. We removed overlapping UCE loebin the data seflo identify UCE
loci overlapping exons, we used BEDTOOLS to intersect the coordinates of remaining loci with
REFSEQ(114 exon coordinates for chickemndremoved all UCHoci overlappingknown
exons.To ensure UCE data did not overlap intraised in our other analyses (2516 intron gene
set), we extracted the chicken sequefioen each UCE alignmentonverted the sequence to
FASTA format, and alignedhem to chicken introns usg LASTZ aad BLAT (115, and
removed all \CE alignments thabverlappedwith our chicken intron sequensg>= 80%
identity over >= 100 bp)We also removed all UCE lodontaining sequee data with non
standard or ambiguous nucleotide repeent at i ons (e. g. at | We st on
aligned the remaining loci using SATEAFFT, and filtered poorly aligned regions as described
in SM3.



Using the above approach, wentified 9,21 UCE loci shared among vertebrates, and
we designed 12,253 probes targeting these UCE loci. After aligning UCE probes to each genome
assembly, filtering duplicate hits, removing overlapping UCEs in clusters, and creating a 100%
complete data matrix (no issing data for any taxon), we identified 4,09CHJ loci shared
among all taxaWe removed one alignment from the complete set of UCE loci because the
chicken sequence did not adequately map back to the chicken reference genome. We identified
and filteredout 335 UCE loci that overlapped with exons a8# that overlappewith introns.
This resulted in a final set of 3,679 putatively ramading UCEoci.

Whole genome data set

We generated gair-wise whole genome alignmenWe downloadedthe whole genome
alignment (WGA) of humarthicken and chickemebra finchfrom the UCSC website We
carried out WGA between genomes of chicken and another specied ASi@ program with
parameters afi-step=19--hspthresh=22068-gappedthresh=10000ydrop=3400--inner=20@ --
seed=120f19-format=axt--scores=HoxD56 and Chain/Net package with parametersiaf
minScoree500® for axtChain program and default parameters for other prograwve.
furthermore usedhainSwamnd other Chain/Net programs to conwhechickenspeces WGA
(chicken as target genome) dspecieschicken WGA (another species as targétje o Net
resultswith AXT format for each pahwise species were used for further analy$is.prevent
multiple hits from the whole genome alignment being usesltook the best hits from the
redprocal best hits, and filterezlit multiple hits.

SM3 Alignments and their filtering
Siavash Miraab, TandyWarnow, Rutada FonsecaVl. Thomas PGilbert, Cai Li,Guojie Zhang,
Brant C. FairclothErich D.Jarvis

All multiple sequence alignments (MSA) (including those mentioned in the previous sections)
were performed in two rounds. The first round was used to find contiguous portions of sequences
that we identified as aberrant. These aberrant sequences were of twaljypedions of the
alignment where only one species contributed to the alignment; and 2) portions of a sequence for
one species that was aligned to other sequences but did not appear to be homologous to any other
species in that part of the alignment (dedow for criteria used to judge homology). These
aberrant sequences reflect both real single species differences, as well as errors in assembly,
annotation, or alignment. The first type (i.e. single species columns) could reflect real insertions
in one species (or deletion in all the other taxa), but such siegkxies sites are not useful for

tree estimation using standard substitui@sed models, and removing these does not lead to
loss of data. The remaining aberrant sequences reflect error in &sseamtotation, or
alignment. These would introduce error in phylogenetic inference. Thus, once identified,
aberrant sequences were removed, and a second MSA round was performed.

To minimize alignment error, we needed an aligner that generated the lzestebaf
avoiding aligning norfhomologous sequences (thus introducing false positives) and avoiding not
aligning truly homologous sequences (thus introducing false negatives). After trying many MSA
methods (MAFFT, Prank, Muscle, and SATé in combination wiitiers)(53, 116118 on a test
set of over 200 randomly chosen exons and introns fror82B6& protein coding gene set, we
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found SATé+Prank was superior in the first MSA round in leaving a large portion of dberran
sequences unaligned whi |l e still generating
sequences (based on visual inspection by multiple observers). SATé is a tool for iterative
alignment and tree eestimation, and uses other tools internally for alignsubsets of taxa,
merging sukalignments, and for estimating phylogenetic trége% 54, 119, 120 In addition to

the choice of these tools, SATé is parameterized by subset size, stopping rule, decomposition
size and the choice of an initial tree. We set the algorithmic parameters for SATé differently
based on the type of data and whether we were using SATé to do the first round (identifying the
aberrant sequences) or the second round (obtaining an accurateealigonn the sequence
dataset after the aberrant sequences were removed). SATé+Prank and SATé+MAFFT refer to
versions of SATé that internally use Prank and MAFFT, respectively, for aligning subsets. For
the second round, SATé+MAFFT was preferred if feasibbeause we found, consistent with
previous studieg53, 59, that this combination resulted in the best accuracy once aberrant
sequences were no longer present.

SATE internally uses an external tool for merginggrahents on subsets and multiple
options were available for this merger step. The performance of these merger tools was impacted
by the type of sequence data. MUSCLE was superior for merging amino acid alignments, while
Opal (119 performed better with DNATable 2 outlines SATé parameters used for different
datasets andppendix B provides the exact configurations used.

Sequences that were very short (i.e. individual-200bp segments for the whole
genome aligment; see below) were handled using MAFFT alone instead of SATé+MAFFT.
SATE uses iterations to estimate alignments, but where sequences are very short, iterations do
not improve alignments compared to MAFFT. Furthermore, MAFFT was computationally less
demanding (it required much less I/O), which is important when millions of segments are being
aligned in a whole genome alignment.

Once the alignments were made, to filter the two types of aberrant sequences we
developed our own scripts. We found that readihilable programs, such asb@®cks (120),
were too aggressive and resulted in many false negatives and thereby a highly conserved
alignment that would bias phylogetic inference. We also found that different types of genomic
partitions (exon vs the rest of the genome) required different filtering parameters to minimize
false positives and false negatives.

We performed a series of initial analyses by estimatings tréth a subset of the 77
fastest evolving genes (all genes with averagistance > 0.25), and found that: 1) the choice
between alignment methods (SATé+MAFFT, SATé+Prank, and MAFFT only) mostly affected
low support edges in the species tree (i.e. algmrerrors not properly filtered out could change
the topology of those edges); and 2) SATéE+MAFFT alignment resulted in higher bootstrap
support compared to other methods. When Prank was used for aligning subsets, due to
computational challenges, we hadéduce the alignment subset size to 20%, so that each subset
aligned by Prank was smaller. The following are the specific approaches used for each type of
genomic partition.

Exon alignment and filtering

The first round of alignment was performed usingT8APrank, and after filtering the second
round was performed using SATé+MAFFT. Before alignment, we concatenated amino acid
sequences of all exonic regions belonging to the same gene. We did not align individual exons
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because SATE relies on phylogenetitineation for guiding its alignment, and very short exons
could result in poor phylogenetic estimation and therefore poor alignments. We used amino acid
sequences to build the alignment, as they preserved the codon frame, and back translated into
DNA usinga custom Perl script that preserved reading frame. We used the default JTT model in
SATEé because we found it to fit our data best for most genes.

Filtering steplt was simple to filter out cases where only one species had sequence in an
alignment siteTo filter out overaligned sequences, sections within individual sequences were
determined to be aberrant or correct based on a model that uses the divergence between species
for each column of the alignment. The values of the parameters of the modelsarke dn
manual annotation of the alignments of the randomly chosen 200 gene set. Based on this manual
analysis, we determined that we needed to calculate four parameters per sequence per window
(length 12) of the alignment, using the following algorithms:

1. The first parameteA is based on the probability of observing the amino a(dss) in a
sequence in a given window of the alignment. The probability of observing amina acid
positioni in a sequencé in an alignment corresponds teethounts fothat amino acide(a®),
divided by the number of sequendés

(1)

The parameteA for a window of sequenc® corresponds to the sum of these probabilities for
each position of the window divided by the length of the window

as 2
A(S)—ZP(L ) (2)

i=1

S ln

2. The secongarameteB is based on the smallest pairwise distance to another amino acid in

that position calculated usingdsum62(121). The use of a columby-column score lowers the
probability of an orthologous sequence that shares high sequence similarity with different
orthologs in differensites of the window to belabee d as fAwrongoioftheoer eac
sequenceS, a° is compared to each of the amino acids on that position in the other sequences

The distance to amino acly in another sequencé that has the smallest dissimilarity &
corresponds tthe highespairwiseblosum62distance

d(a?) = maz{D(a;,b;) :b#a, X £S5} (3)

TheB parameter corresponds to the average of those distances:
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a's
B(s) =y ) @

i=1

3-4. The two other parameters used in the model are #mees of thé\ andB parametersZa
andZg.

The four parameters were used to train a logistic regressodel using the Rgekagg122) and
the regions manually annotated as being outliérs () with all the others t(= 0). Sequence
segmentswere discardedhat hadmore than 40% gaps &®(a°) < 70%, indicative of very
conserved sequences. The resulting model:

t=14+221%xA+036xZp+132%x244+0.06xB —15%xBx*xA—
0.70« Zy A —0.10% Zo + Zg (5)

was then used to calculatefor all the windows within each sequence of each alignt.
Overlapping windows with > 0 were merged, andtifiey containedt least one window with>

3 they were tagged as potentially corresponding to misannotations or resulting from alignment
problems(t = 3 was chose after evaluating the false negatiwe false positive rate using the
manual annotationsyVe generated exaaignments both witl§13,553,087 nucleotidsiteg and
without (13,294,276iteg nonravian outgroups (humanzérd, turtle, and alligator).

Protein Model selectiorOnce the aligments were estimated, we used them to select the
best amino acid substitution model for subsequent phylogenetic analyses. We selected a separate
substitution model for each gene using a Perl script developed by Alexis Stamatakis (available at
http://lwww.exelixis-lab.org/software/ProteinModelSelection.pl). This script first estimates a
parsimony tree, and then scores the alignment based on a list of protein substitution models. It
then reports the best scoring AA substitution model. The following modeks emrsidered:
"DAYHOFF", "DCMUT", "JTT", "MTREV", "WAG", "RTREV", "CPREV", "VT"
"BLOSUM62", "MTMAM", "DAYHOFFF", "DCMUTF", "JTTF", "MTREVF", "WAGF",
"RTREVF", "CPREVF", "VTF", "BLOSUM62F", "MTMAMF". On our dataset, for 91% of the
genes either JTT or JTMere found as the best scoring model.

Intron alignment and filtering
The procedure used to align introns was similar to exons, but was simph&ress ncamino
acid sequence evolution to modémportant differences from the exon procedure were tleat w
used SATé+MAFFT for both rounds of alignment and we aligned each intron from the same
gene individually instead of concatenating them. We found SATé+Prank on the long introns to
be too computationally intensive, limiting its practicality for very longrahents Fig. S19
shows alignment lengthsAlso, we were able to reliably align each intron individually since
they were typically much longer than exons. To identify and filter out-akgned sequences,
we scanned for regions of >=36 bp window sizgu{ealent to the 12 amino acid criterion for
exons) that have <55% sequence identity to all other species in the alignithegeps allowep
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these were removed from the alignment. We tried sequence identijf eadues from 250%

(in 5% incremerd) and found 60% clearly resulted in too many false negatives and 50% in not
enough true positives; so 55% was finally used. After filtering was done, we built a new
SATe+MAFFT alignment and subsequently concatenated all introns belonging to the same gene
using a custom Perl script. We generated intron alignments both with (19,530,152 sites) and
without (19,258,311 sites) navian outgroups (human, lizard, turtle, and alligator).

UCE alignment and filtering

Both rounds of the alignment were ddBATE+MAFFT. We filtered aberrant aligned sequences

in the UCEs using the same code applied to the introns above. Using code
(nexus_to_concatenated_phylip.py) available in the PHYLUCE package (v1.0;
https://github.com/fairclothab/PHYLUCE), we prepared the 3,679 UCEgalnents for gene
tree and cormtenated species tree analyses with (UCE+outgroup) and without (UCE) a non
avian outgroup (alligator)The UCE+outgroup concatenated alignment consiste® 251,694
sites, includings,012,622 site patterns; and the UCE aligntnwithout outgroups consisted of
9,229,346 sites, including 4,833,835 site patteims averagéength of afiltered UCE~outgroup
alignmenswas2,514 bp (95CI = 22; min=1,787; max=3,52Fig. S19). The average length of
filtered UCE without outgrouplignment was 2,508 bp (95CI = 5.31; min=1,803; max=3,561).

Whole genome alignment and filtering

Whole genome alignments were first creatdy a LASTZ+MULTIZ (109, 123
(http://www.bx.psu.edu/miller_lap/pipeline across all 48 bird species and outgroups using
individual chromosomes of the chickgenome as #hreference (initial alignmer®92,719,329

Mb). Weonly allowed a 1:1 mapping to the chicken sequgediteosng the hits withthe highest
identity, to reduce the probability dinding paralogs. MULTIZ alignment segments were
roughly 100200 bps long, withmillions of such segments in the whole genome alignment.
Segments with less than 42 avian species (> Simgigsrd species) were removed to eliminate
bias of specieshat are more closely related the chickenreference genomeand to allow
missing norassembled data of at least fsqgecies, which was possible since we biad orders
where2 or 3 speciewere sequencedHig. 1). Thereafter, aberrant sequences were identified and
removed from the segments using the same approach applied to the introns, and individual
remainingsegments of the MULT alignment were realignedith MAFFT (version v6.860b).

We wee not as confident that a SATMAFFT alignment would give more accurate alignments
and calculating SATé alignments on all segments was not feasible due to computational
challenges (required too much 1/0). We used the mostrate version of MAFFT avalilke (L-

INS-I) with the following command: mafftmaxiterate 1000 localpair. The combined filtering
steps resulted in about 70 Mb removed fromithigal alignment. All individual segments were
concatenated (using custom Perl scripts) to get a finalevgehome alignment containing
322,150,876 sites.

Results: filtered out and missing data in the alignment

Figure S20 shows the relative amounts of data filtered out in our manual analyses of the 200
protein coding genes, and in all exons, introns, and U@Bke alignment across species.
Overaligned sequences (false positives) occurred at a higher percentage than single species
sequence alignments. Not surprisingly, more sequences were filteré@muhe introns and
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UCEs (with their flanking divergenteguences) as they are more divergent than exons. The
outgroups had the highest filtered out values, which is consistent with them being more divergent
to all birds than birds among birds. Within birds, the woodpecker had the most sequences filtered
out (1012% of the intron and UCE alignments; 1.4% of the exon alignment), consistent with the
finding in our companion study that the woodpecker has an extremely higher amount of unique
repeat elements found in no other bird spesieguenced, at levels closer thosefound in
mammals(44). Bird species that had the next highest level of filtering (betwe&®%) across

data sets includedttmm | eognat hs (tinamou and ostrich),
turkey had many misassembly artifacts relative to all the other bird genomes,rentirntanou,

ostrich, and hummingbirtiad greater amounts of divergent sequences relative to chicken than
other specie¢44). The Acciptrimorphae birds of prey (the two eagles and turkey vulture), ibis,
and some others had the least amount of sequence removed, consistent with some of these
species showing low genome diversity due to near extinction events as shown in a companion
study (50). Overall, these findings suggest that in addition to validating the manually analyzed
200 genes, our filtering approaches appear to ltaveectly removed mostly divergent non
homologous sequences unique to each species in the alignment.

Figure S21 characterizes the missing data in our intron alignment, as an example of the
relative amount of missing data across species. For each ortinaogeasure the sequence
length of each species relative to the average sequence length for that ortholog. The histogram
shows the distribution of this relative length statistic across all the intron orthologs. The four
nonavian outgroups clearly have meomissing data, characterized by histograms centered
around values far below 1. Among birds, thmamou,turkey, woodpeckemnd mousebirdhave
the highest levels of missing data, consistent with the filtering results. On the other hand, most
bird specis 6 val ues are heavily centered around
length is typically very close to the average length across all bird species. Thus, the filtering
approach seems to have removed appropriate alignment ancusique sequese in taxa with
greater divergence

SM4: Species tree and gene tree inferences usingxmum likelihood
Andre Aberer, Alexandros Stamatakis, Siavash Mirarab, Tandy Warnow, Brant C. Faircloth

Maximum likelihood species tree mferencesand advancesn inference software

The computational requirements of the datasets examined in this study inspired major
improvements of our phylogenetic inference softweinfer a species tree/e used maximum
likelihood (ML) approaches on concatenated datawetdbtaina ML speciedree with bootstrap
support and a greedily refined majorityle consensusde (reviewed ir{124)). We began with

our standard RAXML(Randomized Axelerated Maximum Likelihood) methd@5) (versions

7.32 to 7.4.2) to compute bootstrap alignment replicates and randomizedistepddition
order parsimonystarting trees, but found that it was not sufficient to generate stable trees in
reasonable computational tine® our large genomscale concatenatecgguence alignments
Thus we developed and tested A -Light (55) version 1.1.1, and found that it worked well

for unpartitioned datasetdut still had limitations for partitioned dataseffius,we developed

and used a new RAXML variant called ExaML (Exascale Maximum Likelih@bd) (pre-
release versionap to version 1.0.9) that can handle mapgrtitionsunder the more memory
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intensiveli (gamma) model of rate heterogeneity.

While the core routines of ExaML (such as the implementation of the likelihood
functionsand search algorithhsre the same as inher RAXML variants, ExaML uses a new
parallelization approach that significantly reduces the communication overhead and hence the
parallel effciency on large concatenated datasets with many partitR#dML -Light employed
a mastemvorker scheme for pdtal inference. This means that a single master process steers the
tree search and triggers parallel regions in which worker processes compute the likelihood of all
sites assigned to them in parallel and finally report the result back to the master.prbasss
two communication steps are required éaecutingeach parallel region. With the introduction
of ExaML, we shifted from this parallelization scheme to a decentradiceeme57). Here we
do not employ a single master process. Instead, each process execotestant and
synchronized copy dfe tree searchlgorithm This eliminates the need for initiating parallel
regions. Given the high number ofarpllel regions in RAxMLLight and ExaML (e.g.
optimization of each branch requires several parallel regions),fowed that this new
implementation in conjunction with the modificatioh the data distribution scheme described
belowincreases runtime eéffiency by a factor of more than 3.

We ckveloped a second improvement to deal with another major cpelldat became
evident by the avian datasets using the GTR [General TieserBbl¢ model on large
alignments that are highlyaptitioned. Onthe one hand, for each partition, a GTR model and
thus a large overall number of parameters must be optimized which in turn makes tree inference
more expensive. On the other hand, while computation of thékklghood can be efficiently
parallelized over alignment characters, sequential computagans the exponentiation of the
matrix containing the instantaneous substitution rates for each partition based on its
Eigenvector/Eigenvalue decompositfiare necessary, prior to computing the likelihood. In the
standard data distribution scheme, characté a partition are assigned in a cyclic manner to
processes. Thus, in the worst case, a process will only compute a few characters for each
partition, but still have to execute the aforementioned sequential operations for each paudition
each branchWe addressed this problem by assigning entire partitions to prodégseshus,
the initial sequential computations that wereessary for computing theonditionallikelihood
the conditional likelihood arragf a partition at each nod# the treearenow distributed across
processors as well. We found that applying this schepeelup computations by ontirther
order of magnitde.

Using RAXML, RAXML-Light, and ExaML, we inferred a varying number of bootstrap
trees andVL trees for each dataséfdble S3). While GTR model parameters and parameters for
rate heterogeneity are optimized for each partition, we agenht branch legth optimization
across all partitions for the partitionddtasets. We model@mnongsiterate heterogeneity using
eithert he (O (1@86pbat thd PSRPer Site Rateqpproximation(127). For inferences under
the PSR model, we calculated the likelihood of all final trees uhdere G mo d el of
heterogeneity using standard RAXML to identify the Besiwn ML tree for each dataset.
Scoring finalt r ees under 0 was ngertomeftrees snferbetl endef BSR t h e
because of excessive memory requiremetasdribed beloyv

We testedif we had computed enoughbootstrap replicates using the bootstrap
convergence criterionl(autoMRE in RAXML) as implemented in RAL (128). Because of
the substantial computational effort associated with bootstrapping and ttesl [somputational
resources, we did, however, not cong the bootstrapping procedufesupport values had not
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convergedafter 200 bootstrap replicate$aple S4). In many instances, a small set of poorly
supported branches (<30%) accounts for a large gdfasupport value instability. Since these
relationships are not considered indicative, it is not essential to infer the exact degree of
instability induced by a weak support value.

Partitioning and gene clustering by prameter smilarity

For some anabes, we patrtitioned regions of the alignment with different evolutionary rates to
determine if such a partitioning would impact the tree resué#tsh partition in an alignment has

its own set of parameters (substitution rates and base frequencies of m@&ER129 and
parameters modeling amosde rate heterogeneity), which are optimized separately by the
maximum likelihood (ML) inference softwarfer each partitionPartitioned alignmentkave a
larger number of distinct site patterns beeaigentical sites that form part of differguartitions

(and hence evolve aazbng to a different model) cant be compressed into a single site pattern
(TableS3E( #pa}).tern)

For comparatively smal datasets (e.g., the amino acid supermatrix) running the
analysis with themaximum number of partitions wasmputationally still feasible. However,
analyzing a huge alignment with a large number of partitions @xg2%° for thec123 dataset)
would result in prohibitive runtimes because model parameters need to be optimized separately
for each partition and because of parallel load imbalahitleough we managed to improve the
efficiency of parallel tree inferemeswith ExaML on datasets with a high number of partitions
(56, 57, it was still not sufficient for complete partitioningpplying advanced tools such as
PartitionFnder (130 to cluster partitions waalso not feasible due to the sheer size of the
datasetsThus, toaddresscomputationalimitations, wereducel the number of partitions per
inferenceeither by simply partitioning o gene marker type (e.g. exon, intron, UCE in the
TENT) or clusters within gene type (i.e. within exons and introns)séguence®f similar
parameters. We then compared trees generated with clustered partitioning to unpartitioned trees
to determine thefect of partitioning.

To cluster the genes, for each jgene sequence alignment, we inferred a maximum
likelihood tree to obtain model parameter estimates for tekepre ct i ve gene tree
parameter of the 0 (h2aodedithe bffee pammetersofdBERModely e ne i t
of nucleotide substitution matriced)/e used the-knears algorithm to cluster genes thie 8,295
exon and 2,516 intron datasétso k = 500genes ineach clustefi.e. partition)as a tradeff
between model accuracy (demanding a higher number of partitions) and efficient utilization of
available computational resourc&sr the exons, we created32additional partitiongi) either
excluding the % codon position and treating thé' &and 29 codon positions of each cluster as
separate partitions or (i) by treating th& 2" and & codon positions as separate partitions
each.

We assembled the distance matrix for the ¢
and substitution rates (yielding a distance matrix with a total of 6 columns). For the exenic per
gene alignments, we modeled codon positions as separate partitiuss. nfdirices with 12
columns (2 x 6 for 1st and 2nd codon positions) served as inputnh@aks clustering. We +e

scaled col umns, such that the weight of the U
the 5 substitution rates. The rationale ostrescaling was to ensure that the rate heterogeneity

parametef i . e . , the U parameter) has the same i mpa
Ssubstitution rates put together. For each par
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as values that were more than 3 standard deviations above or below the mean and set those
values to the maximum value within the 3 standard deviation range around the mean. This
treatment of outliers ensured thatsimgle (outlier) parameter caot dominatethe Euclidian
distance that is calculated by theneans algorithm between gene pairs.

For the amino acid dataset, weere able to treat each geas a separate partitian
reasonable computational time (> between 1241®M000, cpu hourg;able $5). We employed
the followingmodel selection technique to identify adequate firad substitution matrices. For
each partitionwe created anonrrandom tregopology (via parsimony) and computed the-log
likelihood (Inl) for each available protein suigtion matrix implemented in EXL either by
employing the state frequencies provided by the substitution model or empirical base
frequencies. We then selected the higisesting model as setting for the inference on the
concatenated alignment. In other words, gach partition, we chose the amino acid substitution
matrix that maximizes the likelihood for the given, fixed tree topology. Onpaeition
alignments including outgrogpthe JTT matrix131) with empirical (pefpartition) amino acid
frequencies was the mtogequent besfit model and was found to be optimal for 4,988 out of
the 8,295 genepartitions. The standard JTT matrix (with frefined frequencies) was optimal
for 2,559 out of 8,295 partitions. Thus, we also used the JTT matrix with empirical fcezpien
(drawn from the data) for the analyses of the unpartitioned amino acid dataset. This procedure
was repeated for partitied alignments excluding the outgroups with a similar (bminated)
result.

RY-recoding

For the noroutgroup exoronly datasetthe 3rd codon position wagcoded to RY with a
custommade replacement sheficript (A or G = R; T or C = Y) Thereafter, the recoded
alignmentwasapplied to ExaML with the sitesplit into 3partitions: c1,c2,cRY.

Resources and computational effort
We carried out tree inferences aéven computing centers: the Heidelberg Institute for
Theoretical Studies (HITS), the San Diego Supercomputer Center (SRBc)xhe Leibniz
Rechenzentrum Munich (LRZ}he Texas Advanced Computing Center (TACC), theogia
Advanced Computing &ource Center (GACRC, for UCE trees), Amazon Web Services (AWS,
for UCE trees), and th&lautilus supercomputeait the National Institute for Computational
Sciences of the University of Tennessaed Smithsonian Computations at HI$ were
conducted on clusternodes consisting of 4 AMD Ma@amyrs processors (12 cores each) with
either 128 GB or 256 GB RAM. Most inferences on the whole genome dataset under PSR were
conducted on computing nodes at HITS consisting of 3 Intel Sandy BEiBYs (4 cores each)
with 32 GB RAM per node. The cluster at SDSC has nodes with 2 Intel Sandy Bridge CPUs (8
cores each) and 64 GB RAM. For inferences at the LRZ, we used the SuperMuc supercomputer
that currently is on rank 10 among the 500 fastest sapgratersin the world [top 500
supercomputer sites, 2013]. The SuperMuc computer comprises 9,216 Intel Sandy Bridge nodes
with 16 cores each and 32 GB RAM per node.

For theUCE species tree, it was not necessary to use ExaMlinW®rred the best fitting
ML tree using the PThreads version of RAxXML (v7.3.5 -Ott2012, available at
https://github.com/stamatak/standd&@&xML) with 16 cores, the GTRI model, and 20
maximum likelihood (ML) searches on distinct starting treesa 16coreIntel server with 244
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GB RAM. We estimated support values for the best ML topology ugiegMPI version of
RAXML, on 12 compute cores, the standard R bootstrapping procedurand 100 bootstrap
replicates.Following estimation of the best ML tree and bootstrap supportcedes, we
reconciled both into a concatenated species tree sgingard RAXML

Table S5shows theamount of CPU hours spent for md4t tree inferenceslescribed in
this study These runtimes solely refer to the time invested in ML tree inference, exglock
and posiprocessing steps or repeated runs because of software and dataset adaptations. Initially,
we inferred whole genome trees under the PSR model on the HITS cluster. The substantial
memory requirements of this dataset under PSR (242 GB R#ilg@ded efficient execution at
HITS. Because of an additional constant-p#?l process memory overhead, it was not possible
to start one MPI process per core on any cluster system used. In addition, some phases of the
inference process temporarily requirep to twice & much main memory (approximately
500GB). Thus, the number of MPI processes per node had to be limited to 24 instead of using all
48 for the whole genome inferences on the AMD Ma@uayrs nodes and to 4 (later 6 after a
swap space increasey fimferences on the HITS Sandy Bridge nodes. These idle CPU times are
included inTable 5.

Memory requirements did not pose @uch of goroblemfor wholegenome inferences
under G, since the parallel memory over head wu
consumption). Thus, the immense amount of main memory needecf¥t¢ to conduct these
inferences could be distributed amongd$,@ores per run.

We used the number of unique site pattdorscalculating the size of the conditional
likelihood arrays that dominate the mawyaequirements of ML inferenc&dhe G model 0
amongsite rate heterogeneity126) took more than 4 times the amount of memory ttien
position specific rates (PSR) meld127) (Table S5 ( G ) )[ F8rBrstance, for the inference
of a single tree on the whole genome alignment comprising more than 161,000,000 unique site
patterns, we require more than 1 terabyte of main memvbgn usingl versus 256 gigabytes
when using PSR

In summary, MLtree analyses conducted for this stunlylable S5aloneconsumed a
total of 2,340,888.89CPU hours (cpin) or 267.3 CPU yearaind this does not include over 100
CPU hours taken for generating alignments or coalescent tree infefldrecenost expensive
analysis was the whole genomefier e nc e un d e r-h). This(is3f@dl@ved ity 4he c p u
partitioned (500 partitions) analysis on the
238,343.8 cpth. The high number of partitions (500) coupled with a comparatively high number
of alignment characters and the fact that twice as many trees as for the whole genome analysis
were computed leads to runtime requirements in the same order of magnitude as the whole

~

genome inference under 0.

Additional ML inference species treeesults
We compued all pairwise RobinseRoulds (RF) distanced 32 between all result trees (best
known ML tree and consensus tree). The resultingdRfance matrix was used to cluster the
topologies by means of hierarchical clustering (average linkage). We computddt&ices
based solely on the ingroup part of the tfee., we pruned down all trees to the 48 ingroup
taxa).FigureS22shows the dendrogram and underlying pRidistances for each dataset.
Although the PSR approximatiagenerdly requires less runtime and reduces the memory
requirenents of a dataset kayfactor of 4, we found thattee searches under PSR yielded similar
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(interms of RFKMi st ance) but mor e di v(Eig.S29. Theogasoh forgi es
this difference is that we founarf most datasets analyzed under PSR, bootstrap support was

substantially lower comparado s upport obser ved sinfaredrfront . The
PSR on the TENT and other datasets with large sequenced amounts was more often different
than the best tree, whereas the consensus tredifrom e p | i ideaticat te thenbass ML tree,

thus yielding a substantially clearer phylogenetic sighhls suggests that bootstragjerences
under 0@ yielded trees that are consistently
Although the log likelihoodlifferences are smalF{g. S23), this led us to the conclusion that

PSR fails to model rate heterogenedy accurately for small numbers of taxdth large

sequence alignmenés our datasets.

Generating gene trees
Unless otherwise specifiedene trees were estimated using RAXML version 7vdtd 200
replicates of bostrapping.

Exon datasetsTo estimate exon gene trees, we removed the 3rd cod@iopdsecause thse
positions in the alignments shed evidence ofgreaterbase composition heterogeneitgnd
hence do not conform to the asqtions of the GTR moddFig. S15A,8. The alignment used
for the gene tree estimation was the AA alignntesmislated back to DNAFor exon analyses,
RAXML version 7.7.7 was used.

RAXML maximum likelihood inference: 10 RAXML searches, each starting &atifferent
parsimony tree, were rufor each gene, the resulting tree with the highest GTRGAMMA
likelihood score was selected as the best tree. The following RAXML command was used:

raxmlIHPC - AVX -m GTRGAMMA-n [a name] -s [SATé alignment with 3rd
posit ion removed] -N 10 - p [random number] - g [the pa rtition file
separating 1st and 2nd positions]

Partitioning: We partitioned1™ and 2" codon positions separately, so that rate matrices and
empirical frequencies were estimated per partition, but brandthlerwere estimated
jointly.

RAXML Bootstrapping: Botstrapping with 200 replicates was performed using RaxML
under the GTRGAMMA model, with théollowing RAXML command for bootstrapping:

raxmIHPC - AVX -m GTRGAMMA-n [a name] -s [SATé with 3rd pos i tion
removed] -N 200 -b [random number] -p [random number] -q [the
partition file separating 1st and 2nd position s]

Estimating exon gene trees took roughly 96 days of serial computation time.

Intron dataset: We estimated two sets of gene trees for introns, se@ da alignments that
included outgroups and another that excludetgroups. The RAXML parameters for the intron
gene tree estimation were identical to exon gene trees, except that no partitioning was involved.

RAXML maximum likelihood inference: 20 RAML searches, each starting from a different
parsimony tree, were run. All searches were perforrmelruthe GTRGAMMA model.
For each gene, the resulting tree with the highest GTRGAMMA likelihood score was
selected as the best tree. We used the followangnecand:
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raxmIHPC - SSE3 - m GTRGAMMA n [a name] - S [SATé alignment] -N20 -p
[random number]

Partitioning: data were not partitioned in these analyses.

RAXML Bootstrapping: Standardbootstrapping with 200 rejgites was performed using
RaxML under the GTRGAMIA model, with the following RAXML command for

bootstrapping:
raxmIHPC - SSE3- PTHREADS- m GTRGAMMA n [a name] - S [SATEé alignment] -
N 200 - b [random number] - p [random number] -T2

Estimating intron gene trees took roughly 1,100 days of serial computatidinefalignments

without outgroups (gene trees with outgroups were not used in subsequent analysis for reasons
described under the MBST sectioh These computations were performed at supercomputers of
Texas Advanced Computing Center (TACC).

UCE dataset The process used for UCEs was simitathe process used for introns. However,
we performedhe UCE calculatioron the GACRC and AWS computer clusteM/e inferred

UCE gene trees in parallel by scheduling 3,679 RAXRIIHREADS ML tree searches on a
2,600node cluster using the GTRGAMMA model, 20 ML search replicates per locus, and 2
compute cores per locus/gen®e parallelized estimation of support for each gene tree in a
similar fashion, by using RAXML-PTHREADS andthe standard RAMIL bootstrapping
procedire to generate support values fraf0 bootstrap replicate®/e used ommands identical

to those used to generate th&on gene treesEstimating UCE gene trees took roughly 470 days
of serial computational time.

Gene tree statistics

Many of our estiratedgene trees had low to moderate bootstrggpat (BS) (Fig. S24. Exon
gene trees hathe lowest averageBS, with typical values around 25%ollowed by UCEs at
around 40% and introns around 50¥his low support was mostly explained by a combination
of short alignmentsKig. S25) ard low rates of evolutionHig. S26. Lack of strmg support in
UCE gene trees wasot very surprising, given that UCE markers are not veng|(2000
3000bp), and the core part of the UCE sequence is highly conservee\e, it is interesting
that UCEs produce better support values than exidreshigher bootstrap support of intron gene
trees idikely due to the fact that introns are longer and alsee higher rates of evolution than
exons(Fig. S26) and UCEs. Thesexeemely low support trees wenst suitable for coalescent
based inference of epies trees using methods such as-E8T that combine estimated gene
trees, as shown mcompanion papg58).

SM5 Specestree inferenceusing multispeciescoalescence
SiavashMirarab, Tandy Warnow, Md Shamsuzzoha Bayzid, Bastien Boussau, Liang Liu, Scott
Edwards

Standard concatenation approachesidbmodeldiscordance amongenetrees beyond
differences in sequence dwtion rates;insteadthey assumehathidden ssppor t 0 f or ca
cladeswill overcomethe noiseof ILS (133). Simulation studies have also shown that ILS has the
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potential to lead to incorrect clades with high support, possibly due to estimation kaas in
concatenated analysis where the mixture of gene trees represents a model yi84}iorhese
possible limitations can theoretically be overcome with multispecies coalescencesnetich

as MREST. We usedP-EST version 1.0.3 on both unbinndde. aiginal) and binned gene
trees from the TENT and intron only data sét®st MP-EST binned versus ubinned analyses
were conducted at theexas Advanced Computing Center (TACC) at Umversity of Texas at
Austin (http://www.tacc.utexas.eglu

Gene binning
The statistical binning approach is discussed in detaldompanion pape{58) and described
briefly here. Coalesceiiitased methods that mbine gene trees to estimate the species tree are
cal |l ed s ummaumnyary methods cah have reducaturacyor resolutionwhen
input gene trees have low supp@38, 69. The statistical binning methadidressethis issue.
Statisticalbi nni ng creates dishupegogenmei ad i gogenh sr
uses gene trees estimated on these supergene aligremeimisut to the summary method.
Supergenes are formed based on the notion of
and bootstrapping is used to estimate branch support. Two gene trees are considered combinable
if they have no pairs of incompali&edges that have support above a given threshold. The
statistical binning pproach uses a graph algorithm to partition the input set of genes into roughly
equally sized subsets (called Abinso) so tha
compatible. The alignments from genes in the same binanbdoned t o form a fisuj
partitioned maximum likelihood analgson each supergeraignment is used to produce
supergene tree. As shown in the companion p@&prthis procedure dramatically increases the
accuracy of gene trees, the accuracy of triplet gene tree distributions, and as a result the accuracy
of estimated species trees. As an example, Mirarab €b&l.created a simulated dataset of
14,350 genes that closely resemiieel TENT dataset in terms of gene tree count andsbiap
support. On this dataset, MEST applied to binned gene trees had #6re(or 3 incorrect
branches), but MEEST applied to unbinned geneéds had 11% erroFig. S27.
In this study, weused statistical binng to estimate supergene trems two datasetsall
14,446 markers (8251 exons, 2516 introns, and 3679 UGH total evidence datatsand all
2,516 intronsonly. We used a threshold of 50% foetdrmining combinability. Thus two genes
were combined into the same supergene only if all themflicting edges hadupport below
50%. On the TENTL4,446 marker datasdbinning created 130 bins containing Tdividual
genes eachand 293 bins with §enes eachOn the introronly dataset, binning created 542 bins
containing 2genes472 bins with 3yenesand 4 bins with 4enes each
Supergene trees were constructed by a procedureasitoilthe gene tree @siation for
unbinned intron gene trees. The main difference was that we also used partitioning in supergene
tree estimation, such that each gémes its own partitionThe exact commands useckre as
follows:

RAXML maximum likelihoal inference: 20 RAXML searches, each starting from amdifft
parsimony tree, were runnder the GTRGAMMA model. For each gene, the resulting tree with

the highest GRGAMMA likelihood scorewas selected as the best treentthand:
raxmIHPC - SSE3 - m GTRGAMM - n [a name] - s [SATé supergene alignment] -N20 -
p [random number] - g [gene partition file]
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Partitioning: each marker that was put into a bin was defined as one patrtition.
RAXML Bootstrapping: Normal bootstrapping with a fixed number of 200icefds wa

performed using RaxML, using the followicgmmand:
raxmIHPC - SSE3 - m GTRCAT - n [a name] - s [SATé alignment] -N 200 -b [random
number] - p [random number] - q [gene patrtition file]

Estimating supergene trees took roughly 1,800 days of serial computétioaal

MP-EST runs

We used a sitenly multi-locus bootstrapping procedug39 for all MP-EST analysestrom

the 200 bootstrap replicates each gene2@ different nputs to the summary method were built

by choosing one replicate of each gene for each inputEBIP was run on each of the 200

i nput s, anditshempep e2dl®0 sipkeco es tree replicates
majority) consensusf these 200 bootstrap species tree replicates was built, and support values
were drawn on this greedy consensus by counting occurrences of each bipartition in the 200
replicates.

After initial experimentation, we realized that running BT multiple times with varying
random seed numbers dinbt always yield the same tree. We #fe@re ran MP-EST multiple
times and @ok the result from the run with the best likelihood score. We used 50 runs -of MP
EST for the binned MEEST* trees and10 runs for unbinned MEST trees (10 runs and 50 runs
produced similar results)

MP-EST requires rooted gene tre¥ge rootedeach gene tree witbstrich, au if ostrich was
not present, then with tinamotihe MREST allows only one outgroup, because it is difficult to
root gene trees by multiple outgroups whbeydo not form a monophyletic grouphus, while
the correct rootings at the parent node ofwichand tinamouwe always used one taxon as the
outgroup There were 58 genes in the exdataset and 30 genes in theon dataset that did not
include either of these two outgroup takBCEs were selected for only those present in all avian
taxg. These particular genes were left unrooted, and were excluded freBSVIRnalyses.

The intron dataset that included ravian outgroups suffered frotmo muchmissing data
among the nosvian outgroups A nonavian outgroup typically included 1¥0% of the
alignmer; much of the missingortions of noravian sequece were removeth the alignment
filtering stepbecause theyid not have sufficient homology to the avian tgsaeSM3, Fig.

S21). These levels of missing data caused the outgroups to be placed in incorrect piaaeg in
of the gene trees reconstructed (etbey were placed inside the aves). These incorrect
placements in turn reswt in incorrect rooting of the gene treashich negatively affectethe
MP-EST analyses. Thus we decidedinalude MREST analyse®n intron gene treesnly
without the noravian outgroups.

SM6. Justifications of names for higher aixa
JoelCracraft Edward L. BraunPeter HoudeJon FjeldsaDavid Mindell, FrankRheindt Scott
Edwards GaryGraves Warren JohnsoriM. Thomas PGilbert, Erich D. Jarvis

To name cladeswe avoided as muchsapossible adding new nameshere possible sed
previously published names or new names that followed a clearly defined pratat@dhered
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to the Internal Code of Zoological Nomenclatutety://iczn.org/codg for the order and next
several supraordinal level Thus, all superorder names used the subordinate taxon as the
taxonomic prefix, followed by a standard suffix, such as imorphae. Whether previously
published or not, we only used names in the tree figures for groups that had 100% support in
EXAML TENT and multiple otheranalyses and that did not differ between phylogenetic
reconstruction methods with the total evidence dateoset exception was Cursorimorphae with
96% in the EXAML TENT, but still 100% in several other analyses.

Given these criteriapur primary source of names for ordinghssificationand one
higherlevel supraordinal level wathe recent Howard and Moo(el&M) checklistedition 4
(36, 37. Thisclassification was chosérecausall of the named orders are monophyletic based
upon thepreviousevidence (e.g., Hackett et al. 2008)/) and most, although not all, were
consistent with the results of this sjud’he H&M 2013 che&list, however, was generated
without full use of the tree of the current studgnd adopted the philosophy ofducing
redundancy among nameBhus, the previously defined Apodiformes and Caprimulgiformes
were placed into ongroup baed upon interpretations of the prior lgture Given that we find
their divergence occurred before 50 MYA along with the other orders, should future
investigation with more taxa support this divergence timing, then the ordinal status for these two
lineages could be justified. A similar proposal can be made for families within the H&M named
Accipitriformes and Pelecaniformes in our dated tiegg 1, S1). Other higher order level
names include Aequornithia from Howard and Mo¢86), adapted from Aequornithes from
Mayr (16), Australaves and Afroaves frofaricson et al(60) with the former modified from
Australavis byYuri et al (59), and Telluraves fromYuri et al (59). The clade names for
Australaves and Afroaves is based on a biogeographic hypothesis of where these lineages
diverged (60), but our adaption of the names is not neadgsan endorsement of the
biogeographic hypothesis upon which they are ha¥ésl used the names given the currently
published evidence and precederidee result is that of the 18 names higher than the order level,
three are new: Cursorimorphae descrildzbve, Columbea and Passere@he Columbea
Passerea node is robust because it receldd6 bootstrap support in both our likelihood
(ExAML) and coalescen{(tMP-EST*) total evidencérees, as well am nearly allgenomescale
trees from diverse nofoverlaping data partitionsexcept for the protein coding trees that
instead show convergent relationships between these two gfagp2,S2).

Traditional classifications of avian higher taxa were constructed based on morphological
and other features prior the use of molecular sequence data and the composition of these taxa
often differs significantly from those based on molecular détd @nd this study). Thus, for
example, although we use the many of the sameesaas used traditionally (including
Falconiformes, Cuculiformes, Ciconiiformes, Coraciiformes, Columbiforrssjformes and
Pelecaniformes), among the major conclusions of this study are that these orders-are non
monophyletic Figs. 1, 2) as they were tditionally conceivedFig. S3A-B).

The taxon sampling for the present studynsifficient to test whether monophyly of few
named orders will be corroborated by analyses of much larger number of taxa, but it is ideal for
the delineation of highdevel goups. Howeverit is difficult to envision how increased taxon
sampling could affect our resuf the Columbea and Passerea split, as it was found at 100% BS
in multiple analyses with TENT, WGT, and intron data .Séte did not use the protein coding
trees and other smaller data sets alone to support named clades, as we demonstrate these are
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either not sufficient for generating a highly resolved phylogeny or show massive sequence
convergence.

The Internal Code of Zoological Nomenclatutety://iczn.org/codewe used has the
following rank-endings for superordinal ranks:

Infraclass-ae
Parvclasses
Cohort -ia
Superorder -imorphae
Orderi iformes
Family -idae

Ranked clades above the level of colf@mve been vdely usedorior to this study and we
retain them because they were corrolemaby our data. The Passerea and Columbea are
unranked cladesUsing H&M for the supraordinal names meant the following: We use
Phoenicopterimorphae rather than Mirandornithes réber to flamingoes and grebes;
Caprimulgiformes rather than Cypselomorphae to refer to traditional Caprimulgiformes and
Apodiformes combined; Passerimorphastead ofPsittacopasseras Suh et al29) to refer to
Psittaciformes and Passeriformes combined. We grouped Eurypygiformes (Sunbittern) and
Phaethontiformes (tropicbirds) into the superorder Phaethontimorphae, instead of each being in
separate superorders; Gruiformes (cranes) and Charadriformes (ploversnhentsuperorder
Cursorimorphae; and Otidiformes (bustards), Musophagiformes (turacos), and Cuculiformes
(cuckoos) into one superorder Otidimorphae.

For consideration of future classifications, we noted that nearly all (24 of 26 = 92%)
ordinal Neognathae ivkrgences recognized across various studies of the past literature
represented by our species, including orders differently defined across studies, occurred between
69 MYA and 50 MYA in our dated timetreeBifs. 1, S1). The two exceptions were the split
between Coraciiformes (represented by-baters in our study) and Piciformes (represented by
woodpeckers in our study), which was dated to ~43 MYA, and the split between the Trochili
(hummingbirds) and Apodi (swifts), which used to be considered sepadates (Trochiliformes
and Apodiformes) also dated to ~44 MYA (in the TENT). This suggests that future
investigations with increased taxon sampling may show that divergence time could be integrated
meaningfully with phylogeny as a criterion for classifiocat For this reason, ikigure S1we
also list the family names of those species for which their divergence occurred before 50 MYA
where the H&M list considered them as part one order.

SM7 Metatable analyses of species tree and gene trees
Siavash Mirarh, Tandy Warnow, Peter Houde, Edward L. Braun, Joel Cracraft, David Mindell,
Erich D. Jarvis

The metaanalysissummarizessimilarities and differences betweatternative species trees or
sets of gene tregbased orsupport for specific sets of clade€lades are included either if they
receive strong support from one or more of our analyses or are representative of other literature,
i.e., traditional composition of orders- and
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DNA hybridization, mitoclendrial, and morphological data. All analyses were perfornséty a
custom script written in python and based on the Dendid®y package results were
visualized using custom R co@E22).

Species tree metatable
We first determined monophylgf each selected cladd a clade was monophyletic, its support
was determined by examing the branch corresponding to the most receotnmon ancestor

(MRCA) of all taxa in that cladd-or clades that were not monophyletic, we used the concept of

Acompatibilityo t o di stingui sh bet ween we ak

multifurcations, a group of taxa are said to be compatible with monophyly if there exists a

resolution of multifurcations that makes those that group of taxa monophWaticontracted
edges with support lower than 95% in all species trees (we used 95% instbadstdndard
75%, as we noted with genome scale data, support vakresmuch highecompared to typical
single gene alignments)f a clade was incompatible with monophyly even after contracting
edges with suppottelow 95% it was labeled as strongly eeted; otherwise, it was labeled as
weakly rejected (i.e. compatible with monophyly).

Once we determined the monophyly and support of each potential clade in each potential

species tree, we used a custom R code (ubmggplot2 package) to build a blodiagram with

trees as columns and potential clades as rows. For each clade that is monophyletic in a certain

tree, the corresponding block is in green, witinkérshades of green shavg increased support
for that cladeClades that are incompatible witnonophly are shown as red, and those that are
strongly or weakly rejected are distinguegsl using two different shades of red colors; dark red,
for strong rejection and light red for weaker rejection.

We had to substitute representatives of some fasndreorders to compare our results
with trees from the past literatur€able S6; Fig. S3. The substituted taxa in different families,
but within the same order arel) Antrostomus (Caprimulgiformes: Caprimulgidae) was
substituted with  Nyctibius (Caprimgiformes:  Nyctibiidae) (14); 2) Charadrius
(Charadriiformes: Charadrigsdt) was substituted with Haematopus (Charadriiformes:
Haematopodidae)14, 29; 3) Merops (Coraciiformes: Meropidae) was substituted with
Eurystomus (Coraciifores: Coraciidae)(14); and 4) Manacus was substituted with

Cnemotriccus and Pitangus ( ATyTymamidae)llé 45 or

Phylogeny used for selecting nearest relatives and their familial nfatieesed Barker et al
2001 (137), Barker et al 2004138), Barker et al 2013139, Pitra et al 2002140), Fain and
Houde 2007(141), Hackett et al 2008§17), and Cracrih 2013 (36). Sometreesfrom the

literatureweremissingsome of outaxaaltogether. In these cases, monophyly of a clade was not
rejected if taxon sampling was incomplete, as long as it was represented by at least two families.

Blank cells in the table indicate insufficient gaimg to test monophylyConversely, some
genera in literature studies did not match ours closely enough toreapt same terminal
branches and where thus not includBde Hackett et a|17) study did not reporsupport values

with BS below 50%. For these branches, we show results in the metatable with the color

corresponding to 25% suppdaverage between0%)

Gene Tree metatable
Determining the monophyly for gene trees was similar to the species treee beeded to take
into account the complicating fact that gene trees could miss someiteeawe allowed a
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minimum of 42 of 48 avian species to be represerfted.monophyletic clades, we chose to
distinguish between cases where all taxa from a poteniide were present in the tree, cases

where at least two of the taxa were present in the tree, and cases where at most one taxon was
present. When two or more taxa belonging to a cla€le present but someere missing, we
categorize thetmahdégphwligsangdpal f | ess than t
a clade are present in a tree, it is not meaningful to talk about monophyly, and selee tlat
scenar i o aPRutting alli trisstogetleey we obtaid seven different possibiies, as
summarized inTable S7. We refer to these seven possibilities as monophyly categories. Note

that for gene trees, unlike the species trees, we used the standard threshold of 75% to distinguish
between high and low support.

To visualize the monopty status of gene trees, we used a custom R code to create
stacked bar graphs, showing for each potential clade the number of trees where the potential
clade &lls into each of theategories.

Note that thesanalyses reveal the number of gene treesstiggbort or reject a potential
clade. Besides showing these results as bar graphs, we have annotated each branch of the ExaML
TENT and MPEST* TENT trees with the percentage of genes that either strongly support or
strongly reject the monophyly of the ctadlefined by that branch. In calculating these
percentages, we excluded those genes that wer
for those clades. For calculating the percentage of genes that support a clade, we counted all
genes that supped the clade, whether they were complete, or missinge speciesSince each
branch also has a length, these percent support and percent reject values could be easily
compared to branch lengths.

Species tree incompatibility analyses

We compared variouspecies trees in terms of their compatibilippodeby-node congruence)

with the reference TENT tree at various support threshé@ldsanch is compatible if it is the

same in two trees; incompatible if it is néor various bootstrap thresholds (026%, 50%,

75%, 95%, and 100%), we created a version of each species tree where branches with support
below that threshold were contracted. We then compared all these contracted versions of the
species trees againatreference species tree (ExaML TENT) contedcat the same level and
counted the number of incompatible branches between the two trees. For example, this analysis
showed that the ExaML TENT tree restricted to edges with 50% support or more has four
incompatible branches with the intron ExaML trestricted to edges with 50% support or more.
These numbers were simply shown in a line graph where each line corresponded to one support
threshold.

SM8 Phylome-based analyses of gene trees relative to the species tree
Salvador Capell&utiérrez, Jaime tertaCepas, Toni Gabaldén.

Phylome reconstruction pipeline

Proteins encoded in 48 avian genomes plus 4avean ones were used to reconstruct 5
phylomes, using five avian species as sed@dblé S§ that were distributed across the avian
phylogeny: chiken, bald eagle, hoatzin, cuckadgler, and whitetailed tropicbird Fig. S1). The
phylome pipeline used is described in referefig2). In brief, for each protein encoded in the
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seed genomeg SmithWaterman(143) search was used to retrieve homologs in the rest of the
species listed in Table S8, using amadue cutoff of 1e-5, and considering only sequenced tha
aligned with a continuous region representing more than 50% of the query sequence. Thus, the
resulting homologous set contained the seed protein as well as its homologs in the 52 species. If
more than 250 homologs were retrieved, the set was limitduet@30 closest ones. Then, the
selected homologous sequences were aligned using three different programs: MUSCLE v3.8
(118, MAFFT v6.712b(144), and KAlign v2.04(145. Alignments were performed in forward

and reverse directions (i.e. usingetiiead or Tail approacfil46)), and the six resulting
alignments were combined in a consensus alignment usk@pfiée (147). The resulting
consensus alignment was subsequently trimmed with trimAl (148), using a consistency

score cutoff of 0.1667 and a gap score cutoff of 0.1, to rerpowrly aligned regions.

Gene trees were reconstructed using a Maximum Likelihood @plproach. For the
chicken phylome, single gene trees were reconstructed directly from the protein alignments using
amino acid evolution models. For the remaining fopecses, single gene trees were
reconstructed from protein alignments banslated into their corresponding codons with
codonbased modeldhe reason for using amino acid as opposed to nucleotide sequences for the
chicken phylome reconstruction was tlila¢ chicken is more distantly related to most of the
other species and amino acid sequences are less divergent than the nucleotide sequences,
allowing for a more comparable reconstruction.

For proteinbased trees used with chicken as the seed, the eal®ftihe evolutionary
model that best fit each protein family was performed as follows: 1) A phylogenetic tree was
reconstructed using a Neighbour Joining (NJ) approach as implemented in(B#gNJ2) The
likelihood of this topology was computed, allowing brafehgth optimization, using eight
different nodels (JTT, LG, WAG, Blosum62, MtREV, VT, DCMut and Dayhoff), as
implemented in PhyML v3150); and 3) The two evolutionary models that best fit the data were
determined by comparing the likelihood of the used models according to the AIC criféripn
Then, these two models were used to derive ML trees, with the default tree topology search
method NNI (Nearest Neighbor Interchange); tme avith the best likelihood was used for
further analyses. A similar approach based on NJ topologies to select tfitibgsnodel for a
subsequent ML analysis has been shown previously to be highly acd#3teBranch support
was computed using an aLRT (approximate likelihood ratio test) parametric test based-on a chi
square distribution, as implemented in PhyML. A discrete gawfisteibution with four rate
categories plus invariant positions was used, estimating the gamma parameter and the fraction of
invariant positions from the data.

For codonbased trees, trimmed alignments were baakslated from protein sequences
to their orresponding codons prior to phylogenetic tree reconstruction. Then, ML phylogenetic
trees were inferred from these DNA alignments using cdmmed models. ML trees were
reconstructed using codonPhyML v1(D52) with GY as the specific substitution model for
codon data and F3X4 as the model for defining the codon frequency in the iatlalignments.

Similar to trees based on protein data, branch support was computed using an aLRT parametric
test based on a cbguare distribution. In all cases, a discrete gardis@ibution with three rate
categories was used, estimating the gamma paearfrom the data.

For subsequent analyses, the five phylomes were combined into a set of 75,853 ML trees
that span the evolution of genes across the 48 bird species, and cover 94.58% of all predicted
genes. This set contains a high redundancy from diffephylomes and seeds, and thus
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computed values in the analyses are normalized (see below). The results were highly similar
when each phylome was used independently. All gene trees, alignments and orthology and
paralogy calls for the five phylomes are iafale through phylomeDB (htp://phylomedb.org;

(68)).

Phylogeny basedrthology predictions

The species overlap algorithm described(163) was used to detect speciation events in all
phylome trees as implemented in the ETE toqlkB4). A comprehensive list of ortholog pairs

was generated using the MetaPhOrs pipglirttd), which combines predictions from different

trees and phylomes and allows to filter lowly supported pairs based on consistency (consistency
score <0.5).

Gene tree sipport and species tree congruence
The five phylomes described abowere used to measure the congruence of individual gene
family trees with several species tree alternatives. The 75,853 gene trees were scanned using
TreeKO(156), a duplicatioraware algorithm that generates all the species topologies observed
in a singlegene family tree so that all treeKO subtrees contain only one orthologous sequence
per species. To avoid signal redundancy among overlapping gene fapeity tpecies tree
topologies not containing the seed sequéntiee one used to start the homology seaveére
discarded from the analysis. Next, the gene tree support was calculated for every node in the
reference species tree. Each node in the speerslefines two daughter clades, each containing
a set of species. The gene tree support for that node is computed as the number of gene trees in
the phylome that are congruent for that split, divided by the total of trees that are informative for
that nale (i.e. contain at least some species in both of the daughter partitions). To determine
congruence between the species tree and a trelei@ed subtree tree, for each node in the
reference species tree, a match was counted if the two sets of specied befihe two daughter
clades were monophyletic also in the gene tree. The gene tree support consisted of the average of
all its TreeKO subtrees.

Gene losses were inferred based on the duplication events detected for each gene family
and taken into accoti when computing gene tree supportsat is, a match waalso considered
if all the missing species in a given clade were associated to one or more gene loss events
(species are missing in one side of the duplication but not in the other). Gene duplicati
detection, the inference of lost branches and all tree scanning operations were performed using
the ETE toolkit(154).

Normalized RF and incompatibility

A normalized RF distance was calculated for the 75,853 gene trees using the two main reference
tree topologies (ExaML TENT and MEPST* TENT). Given that most of the gene trees
contain@ duplications and a different set of species, we used the TreeKO tree decomposition
method and the speciation distance described in the same(pafeto calculate a normalized

and weighted distance from all possible @pe tree topologies contained in a single gene tree

and the reference. As in the case of the species congruence calculation, only the branches leading
to the seed sequences within a given gene tree were used to compute the normalized RF distance
of that ¢gene tree. Normalized compatibility is measured among high support branches
(aLRT>0.95). Edges with lower support are collapsed and the number of edges that remain

28



incompatible is counted. The values were computed on treeKO subtrees and then normalized per
gene tree as explained above.

SM9 Indel analyses and ILS
Peter Houde, Nitish Narula, Andre Aberer

Indels werescored in the alignments of the exons, introns, and UCEs from the total evidence
data (SM3)using the principle of simple gap codi(®p) as impemerted in 2Xread157). Gap
coding was verified using GapCodgr58) and by visual inspection of alignmenfor a small
subset of data. Intron indels were scored on alignments with and withoatviaanoutgroups
(48and 52 taxa, respectively), UCEs indels were scored on alignments that included alligator (49
taxa), whereas exons were scored on alignments that included -@Viaonoutgroups (52 taxa).
Individual intronsof the same genwere scored independently &void creating artifactual
indels between concatenatedrons whereas exons were concatenated aspim unigenes
before scoringintron and UCE indels were partitioned into size classes.bp,>10bp,>50bp,

and >100kp for separate analyses. For exoimglels >30bp were excluded to avoicbisog
missing exons as indels. The result was 0.15 to 4.2 million indels per data set, wi8%6/.5
being parsimony informativel &ble S9).

We next performed phylogenetic analyses and character state mappxanpingon,
and UCE indeloon the TENT treespoth s@arately and combinedarsimony analyses were
performed using the mult (1000 multiple random additions, 10 trees held per replicate, TBR
branch swapping) and resample (10,000 bootstrap replicates, parsimorormative sites
excluded) options in TN$oftware(159).

TNT outputs a list of character state changes (apomorphies) per node. In addition, it
computes the Retention Index (RI) for every indel character, which is a measure of its
consi stency qlasedoh tha poinciples of tcHaractet state enapping optimized by
the parsimony criterionBinary indel characters with a RI=1dbrrespond to those that were
transformed between the binary states only once uniquely on the tree and therefore fit the tree
perfecty( iconsi stentl yo) . Homopl asious indels (RI
to have transformed twice or more in order to explain their distribution in taxa as they are
arranged on the tre€or every internal branch in the tree, we deterahithe number of indels
with Rl = 1.0 that change on that branch, and diviteat number by the total number of indels
that change on the branchWe refer to lhat valueas %RI=1.0, and express it as a percentage.

%RI=1.0 was regressed against measures t@fnal branch length, since the rate
dependent process of lineage sorting predicts that these should be correlated. Branch lengths of
the ExaML TENT were measured in likelihood units for this regression, but recalculated as time
intervals from the datingnalysis (SM12) for both the ExaML TENT and NBST* TENT so
the regressions of the two trees could be compared using the same units of branch length.
Regressions were also performed on raw numbers of indels against branch lengths. The high
correlations amng all of these variables document that similar %RI=1.0 was not achieved by
significantly different numbers of indel characters.

To produce the total evidence indel tree (TEHig. S19, we performed likelihood
analysesising the BINGAMMA model in RaxML7.2.8(125)
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To compare indel and nucleotide homoplasy, we used the same data partitions to
construct the tree as the characteeg weremappedo the treeThus, indels were mapped to an
indeloptimized tree in the same manner nucleotides weapped to a nucleotiegptimized
tree. We confirmed as expected that indels were less homoplasious than nucleotides in a random
sample of 400 intronsTa@ble S10. Nevertheless, a much larger percentage of indels than
nucleotides were parsimony uninformatiffable S11). To measure the effect of indel length on
indel homoplasy, we mapped indels of progressively restrictive size classes onto parsimony and
maximum likelihood indel trees as well as the reference ExaML TENibI¢ S13. Longer
indels were lessdmoplasious than short ondsaples SP andS13). In spite of the difference in
homoplasy of short and long indels, we included all scored indels in our ILS analyses because
there were relatively few if any parsimony informative long indels in some clades.

Charactermapping revealed homoplasy at all nodes, regardless of whether indels were
mapped to the reference EaxML TENT (range RI=@4H), the alternative MEST* TENT
(range RI=0.5D.91), or to parsimony trees optimized for thdel data themselvggvaluated
by Consistency Index instead using PAUPF60) or visually using MacClade 4161)).
Homoplasy was markedly highest at short internodes at the base of Neoaves that were otherwise
characterized by lower bootstrap support. We regressed the percentage of indels scored as
RI=1.0 (perfectly consistent, no homoplasy) against two measures of internode length, log
maximum likelihood distance and log time as measured on our timetree for the EaxML and MP
EST* TENTSs. In all regressions, % indels RI=1.0 was highly correlatedbnatinch lengthKig.
3E,F).

SM10 TE analyses and ILS
Alexander SuhLinnéa SmedsandHans Ellegren

Retrophylogenomics of owl affinities and ILS/hemiplasy at the base of the core landbirds
Despitegenomescale phylogenomianalyse®f nucleotides and delsin this study, the position

of the Barn Owl remaied the most ambiguous among the core landbird taxaexBmine this

problem from an independent perspective, we made use of retroposon insertions as phylogenetic
markers. Retroposons are transposaldments (TEs) whose mastergedesyy and pastebd
a RNA intermediate, leaving behind daughtepies that are scatteradross the genome. These
daughter copies are usually unablerégpr oduce copies (i.e., Nndead
genomic integations remain, once fixed in a population, as-noding DNA that is vertically

inherited within each orthologous insertion locus.

Many studies especially in mammalian phylogenetics, have shown that retroposon
presence/absence patterns are powerfulogieyletic markers capable of resolving letgnding
controversies (e.g. ref§162, 163) and of detecting nehomoplastic incongruences caused by
incomplete lineage sorting (ILS) of ancient polymorphig@t4, 1691 a phenomenon that has
been termedhemiplasy(70). This is due to the assumption that retroposon markers constitute
nearly homoplasyree, neutrally evolving witnesses of evolution, as homoplasious events are
expected to be very ram@nd certainly rarer than single nucleotide substitutiglls 166. A
homoplasious indel event is either tmelependent acquisition of the same TEthe same
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orthologous locus and target site, or grecise excision of a TE insertion and one copy of the
duplicated targesite

In avian phylogenetics, previous retroposon studik® 167169 based on limited
genomic sequences showed that the different retroposon subfamilies remained active during
certain time periods iavianevolution, allowing the focued targeting of retroposomslevant for
specific phylogenetic questions and providing evidence for controversial relationshipshée.g.
passerines+parrots cla¢®9) and the flamingegrele clade(167)). Based on prior eviden¢g9,
168 on the activity ofhitchcockrelated long terminal repeat element R)Tretroposons during
early aviarevolution, we selected the most numerous subfamily for our owl TE analyses, namely
TguLTR5d.

Taxon Sampling

Our coretaxon sampling comprised, in addition to teeroposon reference genome of the Barn
Owl (Tyto albg, the following 9 core landbirdsMelopsittacusundulatus Falco peregrinus
Cariama cristata Colius striatus Haliaeetus albicilla Cathartes aura Merops nubicus
Apaloderma vittatum and Leptosomus discolorFurthermore,to ensure specificity to core
landbirds, ourtaxon sampling comprise the following 16 noncore landbird taxa within
Neoaves:Charadrius vociferousOpisthocomus hoazirPhaethon lepturysEurypyga helias
Pelecanus crispys Gavia stellata Cuculus canorus Chlamydotis undulata Tauraco
erythrolophus Mesitornis unicoloy Pterocles gutturalisPhoenicopterus ruberColumba livig
Chaetura pelagicaAntrostomus carolinensisand Balearica regulorum This reduced taxon
sampling (26 of 48 bird genomes) was chosen for computational reasons and facilitated manual
inspection of Bgnments of hundreds of marker candidates. After manual inspection and
selection of TE informative marker candidate® sampledhem fromall the remainingoird
genomedor compilation of final alignmentsf all 48 species

Computational Procedures

We identified 3,641 insertions ofhe retroposon subfamilyguLTR5din the Barn Owl genome,
including 1 kb flanks. These insertion loci were masked using RepeatMasker
(http:/Irepeatmasker.orgnd BLASTN(170 searche®f the flankswere conducted against the
remaining 25 species of our core taxon sampling. The resultant BLAST hits were extracted and
locusspecific alignments were gerated using MAFFT144) (E-INS-I1, version 6).

We applied several steps of pdiiering to reduce the amount of namformative
marker candidates. This included the omission of alignments with less than 10 species,
alignments thiacovered only one of the two flanks of the retroposon insertions, alignments that
featured a plesiomorphic TQuLTR5d insertion (i.e., presence in all sampled species), and
alignments that featured an autapomorphic TQuLTR5d insertion (i.e. presence thdyBarn
Owl). Furthermore, we checked our alignment data set for redundancy of loci and potential
paralogy of insertion loci. All potentially paralogous loci were excluded from subsequent
analysis.This reduced the dataset to TERULTR5dTES.

Validation of Retroposon Markers

We manually checkedlignmentsof retroposon marker candidat®r orthology of TE presence

in owl and other core landbirds. Potential markers with a Neeaks partial Neoavewide or
core landbirdsvide presence wemxcluded as these were not of relevance to the position of the
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Barn Owl within core landbirds. For themaining 61relevant marker candidates, we extended
the taxon sampling to include sequence information from all 48 bird genomes.

From this set, we then applisttict criteria for retroposon markers used in other retroposon
studies (e.g. ref29)), if the following situation applied to an orthologous insertion locus:
1. Clear TE presence in all species sharing the specifiop@ton insertion (character state

R10), as indicated by an identical i nserti o
identical TE subtype, and identical target site duplication (direct repeats).
2. Clear TE absence in other species (characterat e A 00) , as indicated

one copy of the target site, and an alignment gap precisely corresponding to the TE
presence/absence region.

3. Only few specieqthose outside the core landbirds and thus not critical for our specific
questim)wi t h mi ssing data (character state A?70)
to large unspecific deletion of the insertion locus.

Control Comparison

We reanalyzed retroposon data on the position of Passeriformes as a control comparison for ILS
levels, using thepresence/absence matrix of referer(@9). This is based on the initial
assumptionhat the lineage leading to the zebirachh within the Neoavegadiationappears to

have gone through a lower levdllaS than other parts of the core landbirds trieig.(3A-F of

this study andrig. S2in referencg29)).

SM11 GC content, codon position, andow-variance vs high-variance genes
Claudia C. Weber, Bo Li, Benoit @bholz, Bastim Boussay Hans Ellegren, Sankar
Subramanian, Cai Li, Edward L. Brauv, Thomas PGilbert, Guojie Zhang, Erich D. Jarvis

GC content calculations
We calculated the GC content across species gambmic partitions usinghe following
formula

G+ C

100
AiT1GrC>

For the protein coding positionse calculated GC conteat the £, 2" and 3 codon position
(GC1 GC2 and GC3ijor eachspecies, respectivelyor all other data sets, waalculated the
average GC content of 48 species fbnacleotide positias in the gons, introns, and UCESs.

Relationship between GC content, tredranch lengths and body massf avian species

A number of studies have suggestedignificant relationshipetween life history traits such as

body mass, metabolic rate and gerieratime and the rate adequenceevolution (171-173).

Here we exatned the relationship between body mass, GC content, and the species tree branch
lengths.

Nucleotide content for ¢123, c12, and c3 were determioe@xons of 830 orthologs
genes (10% of total) with the highest and lowest variance in GC3, as well as the introns
associated with these gend® identify the genes, we calculated the variance in GC content

32



across species and then sortihg orthologsby the mank of the variance, using code in R.
Nucleotide counts were tallied for all sites in a given class before computing the proportion of
GC nucleotides for each speci€som this ranking, we selecting the top and bottom 10% for
analyses.

RAXML analyses on low variance vs. high variance introns were conducted with version
7.2.8 on UPPMAX (see Supplementary Acknowledgements) using the GTRGAMMA model and
100 bootstrap replicategrom these treesye used the roeb-tip branch lengthssince the
lengtrs of time between the root of the avian lineadethe most recent common ancestor
(MRCA) and the tips of each avian species are the same. Theoretically the-tipdbranch
lengths of all avian species are expected to be similar (under a moleculamastgkption).
Therefore variations in the roti-tip lengths of avian species manifest the difference in the rate
of evolution between them. Furthermore using +#toeip branch lengths is advantageous
particularly when comparing two different tree topés (as is the case here).

Using the branch length estimates of the exon trees shown in figures 6A and 6B we
calculated (by summing up) the reottip branch length of each avian species for the
homogeneous and kebgeneous genes respectivalye then prformed correlation analysis
between these branch lengths and the respective body mBedgsmass data was extracted
from the CRC Handbook of Avian Bod§asseg174), and from data available of persons of this
collaboration that work with those species. Where multiple entries for a given species were
presentthe mean was calculated.

As described in the main text,ewobserveda significant positive correlation between
branch length and GC conteffig. 6C) and a negative correlation between branch length and
body massKig. 6D) for both lowvarianceand high-varianceexons(also sed~ig. S17A,B. In
addition, we determined here if there was anga&fbf phylogenetic bias. To remove possible
phylogenetic bias, we performed independent contrast angly&ss using the ExaML TENT
topology. The moduleCONTRASTof the softwarePHYLIP (176) was applied to the leg
transformed values of body mass and branch lengths and the respective tree files. We found that
the correlations were still highly significant for both leariance and highariance &ons
(Table SH). The most important finding was that the magnitude of the relationship between
body mass and branch length was still much higher (four times) forvaiggnce exons than
low-variance exons (slope of the regressionGsl2 vs-0.03 respeively; Fig. 6D). This
suggests that reconstructing phylogenetic trees usingMaigance exons could be severely
affected by heterotachy caused by the variation in the body masses between avian species. This
effect is much reduced for lowariance exons.

Bowker statistics

Bowker tests were computed the 1st, 2nd and 3rd positioosthe data set containing 11851
orthologs (genes without paralogs) across all avian species, using an approach deddritaed in
and modified in(178. Bowker tests are pairwise tests that compare the compositibmoof
sequencest. In our analysebey are significant if the two sequences reztnhave evived
according to the homogenous GTR model. The metric we isséte number of significant
Bowker tests (at the 5% level) for a given alignment

Chromosome position
To plot the relative position of genes on chromosomes, we normalized timosimme position
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of each gene according to the chicken or zebra finch coordinates into a ratio, by dividing the
original chromosome position (start bp site of the gene) by its chromosome size (total bp size).
The ratio positions of all genes of a set (hvgliance or low variance genes) were then split into
100 bins, with bin size being the relative position values and the heights of the bins representing
gene counts. To determine statistical differeneestead of using the bar platirectly, we
transforned the positiorvalues into relative distances to the closest end of each chromdsome,
get position values ranging fror~0.5. Thesmaller values mean closer to the ends of the
chromosomes. With the traformed position values, we performeedlVilcoxon rak sum test for

the two sets of numbers (higlananceand lowvarnance), to determine if one set was closer to

the ends of the chromosomes than the other set.

SM12 Fossil dating analyses
SimonHo, PeterHoude,JoelCracraft,Bent Lindow, Erich D. JarvjslonFjeldsa M. Thomas P.
Gilbert, David P. Mindell, ScottV. Edwards Edward L. Braun

Methods

To estimate the timescale of avian evolution and diversification, we first identified a subset of
the 8,295 orthologs that has undergone clocklike evoluttonstant evolutionary rate among
lineages). This was done by analyzitig 1% and2" codon positionsf each alignment using an
uncorrelated lognormal relaxed clo¢k79 in the Bayesian phylogenetic software BEAST
v1.7.2(180, 18). Thisrelaxedclock model produces eodficient of variation (CoV) of rates,
which measures the degree of rate heterogeneity among lineages. A vadueeftécts rate
homogeneity among lineagea 6trict molecular clock), whereas values >1 indicate a large
degree of rate heterogeneity amomeéiges. Orthologs weselected for the dating analgse
when the mean estimate of the CoV was less than 0.5 and the lower and upper limits of the 95%
credibility interval of the CoV were less than 0.1 and 1.0, respectively. These criteria were
satisfied byl156 athologs (722,202 nucleotides).

Bayesian dating analysis was conducted using a concatenated alignment comprising the
1%'and 29 codonpositionsof the 1156 orthologs selected in the previous step. The tree topology
was fixed toeach of differentgecies trees that were estimated in this study, with a focus on the
ExaML TENT tree Fig. S1). Divergence times were estimated using the autocorrelated and
uncorrelated relaxed clocks in MCMCTREE in PAML 4%&/). Both types of relaxed clock
methodsproducedsimilar date estimatesesults from the autocorrelatesethodare reportedn
this study We used the HKY85+GAMMA model of nucleotide substitution, with four rate
categories for gamradistributed rates across sites. Due to the very large size of the dataset, we
used the approximaié&kelihood method with branch lengthestimated using maximum
likelihood in the PAML program baseml. We also examined the effects of varying the gamma
prior for the overall rates for genes (rgene_gamma) and found that our date estimates were robust
to changes in this prior.

Posterior distbutions of divergence times were estimated by Markov chain Monte Carlo
sampling, with samples drawn every 2000 steps over a totaf steifs after a discarded bdm
of 2310’ steps. To check for convergence to the stationary distribution, each afialgisiging
the baseml step) was run in duplicate and the results were compared between runs.
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Fossil calibrations

To estimate evolutionary timescales, it is necessary to include temporal information from an
independent source. Odatinganalysis was cdlratedusing between 17 and 20 minimum age
constraints for nodes within Neornithes, with the exact number of calibrations dependent on the
presence or absence of specific nodes in the Traleld S15. For the ExaML TENT and MP

EST* TENT trees, respectivel we used 18 and 19 age constraints within Neornithes,
represented by a set of nroedundant calibrations, selected from 39 candidate calibrations that
are described in detail below. In all analyses, we placedhimum age constraiof 66 Myr at

the bas of Neornithes (divergence between Neognathae and PalaeognAtiaayimum age
constraint was placed on the divergence betwésmgnathae and Palaeognathae, corresponding
to the lower boundary of the Upper Cretaceous (99.6 Myr). This Yatuexceeds # age of
paleontological evidence for the existence of Neornithes, and it is 30 million years older than the
divergence our dating analyses revealed for Neoaves.

Since an individual fossil represents a single lineage, it cannot be used reliably or
consisently to date the divergence of two lineages. An individual fossil can either-umder
overestimate the timing of a divergence evéng.(S28. Ambiguity in taxonomic assignment
can result not only from differences in opinion about similarity, but atsa fack of knowledge
of character state pol ari ty. Because some a
Acharacteristicso of c¢clades may not be phyl og
Simply stated, symplesiomorphic characters may betakea for synapomorphies. The
exception to this i's when it is deemed Ai mp
flightlessness), that one group could not be ancestral to another. Fortunately, consensus can be
reached for the placementariyfossi by assigning it to the taxonomic group that is inclusive of
all alternative interpretations of placement. For example, if a fossil were identified by some as a
penguin and by others as an owl, it can be used to place a minimum age constraint on the stem
lineage leading to penguin+owl (plus all other taxa included in such a grouping). On the other
hand, it must be acknowledged that requiring fossil representation from both of two lineages to
document divergence will tend to systematically underestimatrghnce times because it will
have taken some unknown amount of time for the two lineages to become phenotypically
distinct.

Using these criteria, we chose 39 candidate fossils as calibrations for our dating analysis.
Depending on the tree topology, maal these candidate calibrations were redundant. As a
consequence, our dating analyses only used between 17 and 20 of the 39 calibrations described
below. Figure S22 shows a graphic tree view of the calibration nodes used on the ExaML
TENT.

Additional fossil tree dating results and discussion

Although introns can infer a tree closer to the speciesused clocklike exondecause our
analysis of the 2516 conserved orthologous introns revealed widespread and substantial
departures from clocklike evolutioNon-clock like rate heterogeneity among lineages can cause
considerable difficulty for molecular dating, especially when the patterns of variation differ
among loci(182). Using clocklike exons allows us to avoid the problem we found with tree
inference using hig variance exong:urther,sincewe only included the first and second codon
positions of the clocklike exons,emuse data thagive a topology closer to the total evidence
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data. The third codon positions of the high variance genes were the main sabeg@rablems

in using exon sequences for estimating the tree topolbggpite the differences in the tree
topologies with different data sets, whee werformed dating analyses them, all, including
thec123 treewith the biased high variance exons,|gés very similar results with regard to the
timing of the Neoaves radiation as well as other nodes of interest in the tree. Thus, we do not
believe that the redince on the clockke exons caused an error in the dating

The Neoaves divergence dates wadtedslightly forward (about +2.6 million years) or
backwards (atwt -4.1 million years) in timedepending on whether the minimum age for
Neornithes wasnoved ahead or if the neavian outgroup fossils were removed, respectively,
but the radiation wagtill dated to occur around thHe-Pg event Table S16§. We also compared
dating analyses usinggvo outgroup calibrations:47.0 and 250.4 Myr for the alligatebird
divergence and 255#&nd299.8 for the lizareird divergenc€183), and obtained similar results
(Table S14.

Our findings(8, 139 are consistent with the hypesis thathe neoavianradiation was
associated with the Chicxulub asteroid or other environmanfzddét and mass extinction event
about 66 MYA(4, 5, but with several basal lineages of Neem likely diverging before and
surviving through the eventhis is in contrast to themucholder molecular based estimates of
neoavian divergences in several prior stud&sl38 placing them 1810 million years before
the K-Pg boundary, whichve believe may been biased by incorrect hypothes€aibceous
agevicariance biogeography and a high substitution rate of the genes used for the Passeriformes.
Our analysis wasinconstrained by Cretaceeagebiogeographic prioré8, 139 and lacked the
genes withincreased substitution ratespassefiorms

A recent morphologyased study12) also had a similar muckarlier Cretaceous date
for the neoavian divergences. Howevengrphological characters are not cldide, presumably
not independent of one anothand are not described by any substitution maddekphological
characters alsproduce a dramatically fiérent tree than molecular daaa shown in this study,
although tree topology did not have a dramatic effect on our reJulesr upper bound was
about 50 million years older than ours and contraindicated by the fossil record. The fossils they
useddid not meet our criteria for unambiguous temporal calibrationally, theyusel only 6
neoavianspecieswhereas we used 43. One or a combination of these differences could explain
the differences with our study.

Documentation of fossil calibration evidene

Our numbering for fossil calibrationddble S15 and below) increaseas consecutively as
possible up theaviantree from its roqtfrom oldest to youngestach calibration includes a
heading & define itsposition onthe TENTtree and its ageThis isfollowed by designation of a
higher taxon to which the reference fossil has been assigned or can be confidently assigned. This
in turn isfollowed in each casby: a) in boldface italicghe reference fossil species used for the
calibration andthe citation in ( ) of its taxonomic descriptionp) if warranted, citation of
additional relevant papers describing reinterpretation of the reference fossil or additional fossil
material; c)the stratigraphic range of the taxaith citationif warranted;andd) the parts of the
skeletonfrom which the fossil is known. Under the same numbered calibration heading, some
have additional fossil evidence that tentatively suggest temporal range extensions or provide
additional support for the calibration.
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1) Internal bra c IstruthiotTinamu® = MRCA A Pal aeogna-blhbad¥* Neogna
stemPal aeognathae, ALithornithidae

Lithornis celetius(184)

Late Paleocendeatiest Tiffanian; 60.661.57 MY) (185

complete skeletons Lithornithidae

Latest Cretaceousto Earliest Paleocenglatest Maastrichian tearliest Danian), Hornerstown
FormationMonmouth County, New Jers¢$86)

tentatively referred scapula

2) Ter mi nSarithioBr 200 c MY A

Struthionidae

Struthio coppens{(187)

Early Miocene(East African Faunal Set FAQ MY) Elisabethfield, Namibia
hindlimb

3) TerminalB r a nTenamué = M Bt@iotfinamus 1-57.5 MY

Tinamidael gen indet, sp ind€t.88)

Early Miocene Pinturas Formation Santauz, Canadon de las Vacas, Santa Cruz, Argentina
MACN-SC-1399 distal tibiotarsus

Middle Miocene, Santa Cruz Formation, Argentina

referredcoracoids and humeri

4) I nternal br anch géndmes gxdwuingnSawho+Tham&§70MY 46 bi r
stan-Anseriformes

Vegavis iaai(80, 81, 189

Late Cretaceous(Middle? toLate Maastrichtian 66i 68 MY) unit K3, Cape Lamb, Vega Island,
Antarctica

most of postcranial skeleton except furcula, sternum, and carponpetscar

5) Ter mi nfmd® B~ aMRithé G | | i f ebdMe s o 51
Anseriformes ?Anseranatidae

Anatalavis oxfordi(190)

Early Eocene(Ypresian;54-51 MY) London Clay Formation, Waltean-the-Naze, Essex,
England

skeleton lacking hindlimb

6) Internal Bran hGafiustMeleagri® = MR@a& Gal | i f ormeso 50. 3 MY
stem-Galliformes

Gallinuloides wyomingensi§191-193

Early Eocene Upper Fossil Butte Member, Green River Formation, near Kemerer, Wyoming
complete skeletons

7) Ter mi nRaerocld®r &2mMc v MY
stem-Pterocliformes
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Leptoganga i Pt e r sepultus(:04, 195
Late Oligocene(MP28; 24.7 MY)

tarsometairs

Archaeoganga pinguis, A. larvatus, A. valid{$96)
Quercy fissure fillingsno stratigraphic data
coracoid, humerus, tarsometatarsus

8) Ter mi nColumbBr an dMRtE€fclesiColumbarany ot hers in betwe

Columhbdae

Columbina prattag(197)

distal tarsometatarsus; >350 referred specimens represent nearly complete postcranial skeleton
Early Miocene(18-19 MY), Thomas Farm local Fauna, Early Hemingfordian, Gilchrist County,
Florida

Rupephaps tketake(198)

Early Miocene (Altonian; 16-19 MY) Bed HH1a, Bannockburn Formation, Manuherikia Group

St Bathans Fauna, New Zealand

coracoid

9) | nt er Rroénicdptaus-Roditepsi 32 MY

GrebeFlamingo stem group

Adelalopus hoogbutseliens{d499)

Lower Early Oligocene (Rupelian; MP21 32 MY) Belgium

coracoid

Palaelodus ambiguu$200)

Early Miocene(Agenian) SaintGerandle-Puy, Allier, France

complete skeletons represented by many thousands of referred bones from hundreds of
individuals from this and congeneric speciesgracilipesand P. crassipes

10) Termira | B rPodicegp A = NPRo€micoplerus+Podiceps 2 €23.08 81Y
Podicipedidae

Miobaptus walteri(201)

Early Miocene (Aquitanian 20.4323.03 MY) Dolnice, Cheb Basin, Czechoslovakia
proximal humerus, coracoid, tarsometatarsus

11) Ter mi RPloénicdptensdn 2HR23.68 MY
Phoenicopteridae

Phoenicopterus croizet2z02, 203

Late Oligoceneto Early Miocene (Aquitanian 20.4323.03 MY), France
complete skeleton

12) Ter mi BaearicdBr 8 82c MY i
Gruiformessensu Howard anélloore (36), Gruidae
Belgirallus oligocaenusandB. minutus (204)

Earliest Oligocene(MP 21;32 MY) Boutersem, Belgium
distal humerus, coracoid, distal tarsometatarsus
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Parvigrus pohli(205)

Early Oligocene(MP 24;28.433.9 MY), Luberon Vacheres, France

complete skeleton

Balearica exigua(206)

Lower Late Miocene(Late Clarendonian) Cap Rock Member, Ash Hollow Formation, Antelope
County, Nebraska

complete skeleton

13) Ter mi @OpisthocBmua n-242MY i

Opisthocomidae

Hoazinavis lacustrig207)

Late Oligoceneto Early Miocene (Late Deseadan; 224 MY) Tremembé Formation, Taubaté
Basin, S&o Paulo, Brazil

humerus, partial coracoid and scapula

14) Ter mi fudcad BraBAc MY

Musophagidaé gen indet, sp indéR08)

Early Oligocene Quarry M, Jebel Qatrani Formation, Fayum, Egypt
CGM 42836:distal tarsometatarsu€GM 42837: distahumerus

15) Internal Ba n cRhaefiorr si st er 0 55. 8 MY

stemPhaethontiformes

Prophaethon shrubsolgj209, 210

Early Eocene(Ypresian)London Clay Formation, Isle of Sheppey, England

skull, partial sternum, coracoid, scapula, fenproximal tibiotarsus, vertebrae, synsacii@hl)
Lithoptila abdounensiq212)

Late PaleocengThanetian), Ouled Abdoun Basin, Morocco

cranium(213

Late PaleoceneandEarly Eocene(ThanetianEarliestYpresian,Early Ypresian)

51 referred specimens including all major appendicular elements exapptesand tibiotarsus

16) Ter mi Gavio B av@ahid+8ii st er 6 32 MY

Gaviidae

Colymboides minitug194)

Early Miocene SaintGerandle-Puy, Franc€201, 214216)

referred specimens comprise nearly completécpasial skeleton

Colymboides metzler{217)

Early Oligocene(Rupelian; MP21; 32 MYclay pit of the BottEder GmbH (Grube Unterfeld),
Frauenweiler, BaderWirttembergGermany

two dimensional rostralertebrae, limb, sternum, pelvis, tarsometatarsus

17) Ter mi FrAMarudr a n MRWFarust si st er o 32 MY

Procellariiformes
Diomedeoides brodkorl{genus Fischer 1985; species Cheneval 108H)
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Early Oligocene(Rupelian; MP21; 32 MY clay pit of the BotEder GmbH (Grube Unterfeld),
Frauenweiler, BaderWurttemberg, Germany

femur (219

referredtwo dimensionatomplete skeleton

18) | nt e rPhaacrocBrax®ealecamuskEgrettatPlegadi® 5+#41.9 RY
Pelecaniformes sensu Howard and Mo@magraft 2013)36)

Limnofregata azygosterno(220)

two dimensional amplete skeleton and feathers

Upper Early Eocene(Ypresian or Lostabinian) toLower Middle Eocene(Lutetian or
Bridgerian 50.2+ 1.9, (221)

Masillastega rectirostrig222)

Lower Middle Eocene(MP11; 47 MY), Grube Messel, Hess, Germany

two dimensional skull

19) Ter mi PlmlacroBoraan @B . @ MY

Phalacrocoracidae

Borvocarbostoeffelensig223

Late Oligocene(MP28; 24.7 MY)Enspel near Bad Marienberg, ReinlaPfhlz, Mainz,
Germany

two dimensional amplete skeleton

20) I nterGhaddriuBsastcerid 32 MY
Charadriiformes

Boutersemia belgicandB. parvula(204)

Earliest Oligocene(MP 21;32 MY) Boutersem, Belgium
Nupharanassa tolutariaand several othef208)

Early Oligocene Quarry M, Jebel Qatrani Formation, Fayum, Egypt
distal tarsometatarsus

21) Internd B r #&yygastelisAptenodyted 6/ 61.6 1Y

Sphenisciformes

Waimanumanneringi andW. tuatahi (224)

W.manneringi

Late Early Paleoceng60.5 61.6 MY), Basal Waipara Greensand, Waipara River, New Zealand
tibiotarsus, proximal fibula, tarsometatarsus, pelvis, synsacrum

W. tuatahi

Lower Late Paleoceng58i 60 MY) Upper Waipara Greensand, Waipara River, New Zealand
skull fragments, incomplete mandible, cervical vertebrae, synsacrum, furcula, coracoids, partial
scapula, humerus, ulna, radipsoximal femur

22) | nt e rbyrettarsidero a -Z3BMY

Pelecaniformes sensu Howard and Moore (Cracraft A863)stemArdeidae
Proardeaamissa(225)

distal tarsometatarsus
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A ndescribed specimems

Late Oligocene(MP 28;25.326.39 MY) Quercy fissure filligs Pech Desse, Fran¢g6)
Proardeola(=Proardeg walkeri (226)

Late Oligocene tdEarly Miocene, Chavroches, Allier, France

tarsometarsus

Calcardeajunnei (227)

Early Eocene(Wasatchian), Willwood Formation,ighorn Basin, Wyoming

partial coracoid

23) Ter mi RlagadisBsriasntcenr o 47 MY

Pelecaniformes sensu Howard and Moore (Cracraft 2868)stemThreskiornithidae
Rhynchaeitesnesselensi§228-230)

Lower Middle Eocene(MP11; 47 MY), Gruke Messel, Hessen, Germany

several referred completeo-dimensionakkeletons

24) Ter mi ywod Br AyoAs iist e6L.OMYs 6 . 8
stemStrigiformes

Ogygoptynxwetmorei(231)

Late PaleocendTiffanian), Mason Pocket, Colorado

tarsometatarsus

Berruornis orbisantiqui(232)

Late PaleocendThanetian; MP 6), Reims area (Cernay and Monte Berru), Marne Département,
France

distal tibiotarsus and tarsometatarsus

Berruornisi sp indet(233

Late PaleoceneWalbeck fissure filling, Germany

incomplete tarsometatarsus, premaxilla

Eostrix (Protodrix) mimica (234

Early Eocene Wasatch FmSouth side of Ten Mile Creek, near Worland, Wyoming
distal tibiotarsus, referred distal tarsometatarsus

25) | nt e rHaméetuHalmatus-Gatharte® 3-38.9 MY

stem-Accipitriformes

Horusornis vianeyliaudag(235)

Late Eocene(MP17), Gisement de La Bouffie, Phosphorites du Quercy
tarsometatarsus; referred material includes all major postcranial bones and phalanges

26) | nt e rQolas+PicBidesall otters in bet e e n 0-56%H 61Y 0
Coraciimorphae, ASandcol eidae
Sandcoleusopiosus(97)

Earliest Eocene(Middle Clarkforkian,Plesiadipiscookizone 56-56.5 MY), Sand Cogle Beds,

Wil l wood Formati on, Clarkbés Fork Basin, Wyomi

complete skeleton, referred partial skeletons
Chascacocoliuoscitans(97)
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Early Eocene(EarlyWasat hi a n ; ma X . 55.1 MY) Grey Bul
Fork Basin, Wyoming
mandible and appendicular skeleton except tarsometatarsus

27) I nterQolaugrsBsamrecld B7. 7 MY

Coliiformes

Primocoliusminor andP. sigei(236)

Late Eocene Perriere (MP 17), Escamps (MP 19; 35.5 MRNosphorites du Querclyrance
(237, 238

P. minor.

humerus, proximal carpometacarpus

P. siget

tarsometatarsus, distal humerus

Palaeospizaella (239, 240

Upper Late Eocene(Chadronian34.0%#36.73 MY), Florissant FormatioiColorado
Oligocoliusbrevitarsus(241)

Early Oligocene(Rupelian; MP21; 32 MY clay pit of the BotEder GmbH (Grube Unterfeld),
FrauenweilerGermany

postcranial skeleton lacking one wing and foot

28) | nt er bheptbsonids |in I HBERMYE
Coraciimorphae, APl esiocathartidae
Plesiocathartekelleri (242, 243

Lower Middle Eocene(MP11;47 MY), Grube Messel, Hessen, Germany
complete two dimensional skeletons with feathering
PlesiocathartesvyomingensisandP. major (244)

Early Eocene Green River Formation, Wyoming
Plesiocathartesvyomingensiscomplete tw-dimension skeleton
Plesiocathartesnajor. two dimensional postcranial skeleton lacking wings

29) Ter mi AgaloderBid a v ¢ MR@lAdering s i s 555rMY
Trogoniformes

Septentrogormadseni(245)

Latest Paleocenetarli est EocengFur FormationEjerslev Industrial Pit, Island of Mors,
Jutland, Denmark

neurocranium

AiPrimotrogon?0 pumilio (246)

Lower Middle Eocene(MP11; 47 MY cited as 49 MY in above reference), Grube Messel,
Hessen, Germany

two dimensional skeleton

Bed

30) Ter mi PieoldeeBr=a nMRhiC A of @APi ci formes+Passerifo

bet w82MY0
Piciformes(subordelPici)
Rupelramphastoide&nopfi (247)
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Early Oligocene(Rupelian;MP21; 32 MY) clay pit of Bot-Eder GmbH (Grube Unterfeld)
Baden Wiurttemberg, Germany

two dimensionaédppendicular skeleton

Capitonideseuropeus(248) as cited by249)

Middle Miocene (early Burdigalian fissure deposit) Bavaria: Wisteof (West) Germany
carpometacarpu50

referred humerus, ulna, tibiotarsus, tarsometatarsus

31) Terminal BranchBuceros47 MY

BucerotesgemiilUpupiforme® or @A Bucer oti for meso
Messelirrisorgrandis (251, 252

Lower Middle Eocene(MP11; 47 MY), Grube Messel, Hessen, Germany
pectoral girdle and limb; referred complete skeleton and pigmented feathers

32) I nternal Branch #l®tM¥atornithidae+sisterao
Caprimdgiformessensu Howard and Moore (Cracraft 20(3&j), stemSteatornithidae

Preficanivea (253, 253

Late Early Eocene(Lostcabininansubstage of Wasatchiamn Y presian) taearly Middle
Eocene(Bridgerianor Lutetian;50.2+ 1.9 MY), Fossil Lake locality F2, Fossil Butte Member,

Green Rver FormationLincoln County, Wyoming221)

mandible and two dimensional postcrarsigleton

33) Ter mi ArdrostoBus a = c M RRrastomus(ChordeilesCalyptd 6 47 MY
Caprimulgiformesensu Howard and Moore (Cracraft 20(3j), Nyctibiidae

Parapreficakelleri (254, 259

Lower Middle Eocene(MP11; 47 MY), Grube Messel, Hessen, Germany

two dimensional caudal half of skeleton and wing; refétwo dimensional postcranial skeleton
and nearly completekeletonandfeathers

34) |1 nt erGhaeturaBGalypted c B5A15 MY
Caprimulgiformesensu Howard and Moore (Cracraft 2003j), suborder Apodi
Eocypselisvincenti (256, 257

Earliest Eocene(Ypresian),London Clay Formation, Englar{d58)

Earliest Eocene(Ypresian), Fur Formatigrisle of Mors, Jutland, Denmark
pectoral appendage and girdle; referred complete and postcranial skeletons
Scaniacypseluszarskii(259)

Middle Eocene Messel, Germany

completetwo dimensionafeathered skeleton

35) Ter mi nal B r a n MRCA hu@aihgpim ainel swift3 2 MY
Caprimulgiformesensu Howard and Moore (Cracraft 20(3j), suborder Trochili
Eurotrochilus inexpectatug260, 26}

Early Oligocene(Rupelian; MP21; 32 MYclay pit of the BotEder GmbH (Grube Unterfeld),
Frauenweiler, BadefWurttemberg, Germany

two dimensionatomplete skeletons
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36) I nternal Br aanoc 4 7a QvaYr i ami dae+si st e
StemCariamiformes

Idiornis tuberculata(262)

Lower Middle Eocene(MP11; 47 MY), Grube Messel, Hessen, Germany
complete two dimensional skeleton

Elaphrocnemusphasianus(225, 263, 26}

Late Eocene Phosphorites du Quercy, Escamps (MP 19)

skull and all major appendicular elements
Paleopsilopterustaboraiensis(265)

Late Paleocene

distal tibiotasus, proximal tarsometatarsus

37)I nt er n a AcarBhsitariMarnacugCorvustTaeniopygiaGeospizaMeropstany

ot hers i5M6MEét weeno

CoraciopasseresPasseriformes fam indet, gen indet, sp indet

Early Eocene(Wangerripian; 54.6 MY, Tingamarradcal faunaMurgon, Queensland,
Australia(80, 96, 266269

QM F20688:proximal carpmetacarpus; F24685: distal tibiotarsus

fam indet, gen indet, sp ind@&70)

Early Oligocene(Rupelian; MP21; 32 MY clay pit of the BottEderGmbH (Grube Unterfeld),
Frauenweiler, Badewurttemberg, Germany

SMF Av 497:two dimensional complete skeleton

38)InternalB r a nMahacudCorvustTaeniopygiaGeospiza 1-B.6RY i MRCA
suboscine and oscine

Passeriformes, suborder Tyranni (subosciffEsyylaimidaei gen indet, sp indet

Middle Miocene (early Burdigalian) Bavaria: Wintershof (We§260) as cited by(271)
Early Oligocene(Rupelian; MP21; 32 MYBadenW(rttemberg, Germany

distal humerus, proximal ulna, distal tarsometatarsus

Passeriformes, suborder Passeres (estisterrCorvidae

Miocitta galbreathi(272)

Late Miocene(16.313.6 MY), Kennesaw local fana lower Pawnee Creek Fm, Colorado
distal humerus

39) Ter mi favu® B r a ME@Ag(TaeniopygiagGeospiza ©1.67.2 MY
Corvidae

Corvuslarteri (194)

Late Miocene(Tortonian)Sansan, Gers Départemertance

nearly complete postcranial skeleton

SM13 Data availability
We deposited data generated for this study in several publically available databases. The
assembled genomes as well as the ability to BLAST/BLAT search and browse them are available
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in six databases listed below. The GigaSciencecsofreported as data note&76, 277)] is

useful for downloading the assembled genomes, and all other data. The ENSEMBL, NCBI, and
UCSC databases are useful for browsing the genomes, performing sequence BLAST/BLAT
searchers, and analyzing ffetermined emparative analyses performed by those groups. The
CoGe database is useful for performing your own comparative analyses. In addition, the
phylomeDB generated gene trees are analyzable and dowable®dcom the phylomeDB site

listed below.Table S17 (excel file) list the accession numbers by species for each of the
databases that give accession numbers.

Genome download, BLAST searchable and Genome Bravsing Databases

Original genome download data repositdnit{://phybirds.genomics.org.tn
GigaScience Downloadétfp://gigadb.org/dataset/101Q&pecies URLs in Table S17)
ENSEMBL.: (http://ensembbirds.narf.ac.uk

NCBI: (species URLs in Table S17)

UCSC: qttp://genome.ucsc.edu/ebin/hgGatewayunder vertebrate genomes)
CoGe:(https://genomeolution.org/wiki/index.php/Bird_CoQe

Files below are downloadable in the GigaScience data n@iesve)associated with this study:

Filtered loci sequence alignments
1 8295 Exons
1 8295 Amino Acids
1 2516 Introns
1 3769 UCE+1000 flanking bp
1 2022 supergene glimentggenerated from statistical binning.

Unfiltered loci sequence alignments
1 Amino.Acid.unfiltered
1 Exon.c123.unfiltered
1 Intron.unfiltered
1 UCE.unfiltered
1 WGT.unfiltered

FASTA files of concatenateddatasets in alignments
We provide FASTA files of contanated sequence alignments of the above filtered loci datasets.

Concatenated alignments used in ExaML analyses:
Exon.AminoAcid.ExaML.partitioned
Exon.c123ExaML.partitioned
Exon.c123ExaML.unpartitioned
Exon.cl.ExaML.unpartitioned
Exon.c2.ExaML.unpartiioned
Exon.c12.ExaML.unpartitioned
Exon.c123RY.ExaML.unpartitioned

45

= =4 -8 -8 _-9_9_-°


http://phybirds.genomics.org.cn/
http://gigadb.org/dataset/101000
http://ensembl-birds.narf.ac.uk/
http://genome.ucsc.edu/cgi-bin/hgGateway
https://genomevolution.org/wiki/index.php/Bird_CoGe

Exon.c3ExaML.unpartitioned
Intron

TEIT.RAXML
TENT+c3.ExaML
TENT+outgroup.ExaML
TENT.ExaML.100%
TENT.ExaML.25%
TENT.ExaML.50%
TENT.ExaML.75%
WGT.ExaML

=4 =448 -5_45_9_9_9_2°_-2

Concatenated alignments used in RKK analyses:
1 UCE concatenated alignments with and without the alligator

Clocklike exon alignment
Concatenated c12 ¥#2" codons) DNA sequence alignments from the 1156 clocklike genes
were used for the dating analyses. Theseabigaments of the firsand second codon posit®n
of clock-like genes among the 8295 exon orthologs
1 cl12.DNA.alignment.1156.clocklike.zip
1 cl12.DNA.alignment.1156.clocklike.txt

High and low variance exons and their associated introns

1 High variance exons:
o0 Exon.heterogenous.c123
o Exon.heterogenous.c12

1 Low variance exons:
o Exon.homogenous.c123.
o Exon.homogenous.c12

1 High variance introns: These dreterogeneousitrons
o concatintronNooutMSAlow.fasta.gz

1 Low variance introns: These are homogenous introns
o concatintronNooutMSAhigh.fasta.gz

Indel sequence alignments
This is a concatenated alignmenirmadelsfrom exons, introns, and UCEs.

Transposable elemenmarkers
1 owl TE_marker_Table.txt

Species and gene tree files

Species trees (Newick format) were generated with either RAXML, an vegiexaML version
for handling large alignments, or MEST*. We deposit both the maximum likelihood and
bootstrap replicate trees.
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Newick files for 32 species trees using different genomic partitions and methods
Exon.AminoAcid.ExaML.partitioned.tre
Exonc123.ExaML.partitioned.tre
Exon.c123.ExaML.unpartititoned.tre
Exon.c123RY.ExaML.unpartitioned.tre
Exon.c12.ExaML.partitioned.tre
Exon.c12.ExaML.unpartitioned.tre
Exon.cl.ExaML.unpartitioned.tre
Exon.c2.ExaML.unpartitioned.tre
Exon.c3.ExaML.unpartitionede
Exon.RAXML.heterogenous.c123.tre
Exon.RAxXML.heterogenous.c12.tre
Exon.RAXML.homogenous.c123.tre
Exon.RAXML.homogenous.c12.tre
Intron.RAXML.heterogenous.tre.txt
Intron.RAXML.homogenous.tre.txt
Intron.RAXML.partitioned.tre
Intron.RAXML.unpartitioned.tre
Intron.MREST.binned.tre

Intron.MP-EST.unbinned.tre

TEIT.RAXML.tre
TENT+c3.ExaML.tre
TENT+outgroup.ExaML.tre
TENT.ExaML.100%.tre
TENT.ExaML.25%.tre
TENT.ExaML.50%.tre
TENT.ExaML.75%.tre
UCE.RAXML.unpatrtitioned.tre
WGT.ExaML.alternative.tre
WGT.ExaML.best.tee

A A2 _5_9_9_5_4_4 -4 _2_9_92_9_9_92_92_92_9_9_-92_2_°9_-2_-2--2-°2_-2._>-2-

Newick files of the 1 timetrees (chronograms)
ChronogramO1.TENT.EXAML.tre

Chronogram02. TENT.EXAML.max865.tre
Chronogram03.TENT.ExAML.AIllig247 .tre
Chronogram04.TENT.ExAML.noutgroup.tre
ChronogramO05.TENT.ExXAML.noutgroup.max865.tre
Chronogram06. TEN.MP-EST .tre
Chronogram07.WGT.ExAML.alternative.tre
Chronogram08.WGT.ExXAML.best.tre
Chronogram089.Intron.EXAML.unpartitioned.tre

= =4 =4 -4_9_9_9_2_-2°
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1 Chronogram10.UCE.RAXML.tre
1 Chronogram11.Exon.c123.RaXML.partitioned.tre

Newick file downloads of genedes (species abbrevet with Sletter names)
1 ML (bestML) gene trees
1 Bootstrap replicates of ML gene trees
1 ML (bestML) supergene trees used in BT analyses
1 Bootstrap replicates of supergene trees used FEMIP analyses
1 Partition files showing which loci make up which ®iior MREST analyses
List of scripts used in avian comparative genome project
We also deposit the key scriptsed in this project in GigaQBvhich include:
9 Script for filtering amino acid alignments
1 Script for filtering nucleotide sequence alignments
1 Script for mapping names fromlétter codes to full names
1 Scripts related to indel analyses

PhylomeDB data: All gene trees, alignments and orthology and paralogy calls for the five
phylomes are available through phylomeDBitphylomedb.org).
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Fig. S1.Genomescale phylogeny of birds, showing an uncolleged tree of all species sequenced.

Figure explanation is the same as in the legend of Figure 1. In addition, we note the following: The
Neoaves radiatioappears to exhibthree nested radiations, the initial radiation soon after the Columbea
and Passerea split followed by core waterbird and core landbird radiations within the PBsaactes

with very closely related species within the saonger or suborder are not agbed and thus the tree

shows all species sequenced. The 6 branches within Passerea that have less than 100% support included
placement of: 1) the superorder Otidimorphae (turacos, bustards, and cuckoos); 2) the
Caprimulgimorphae (hummingbirds, swifts, anightjars); 3) the Cursorimorphae (cranes and killdeer;

but 100% in some other analyses); 4) the Phaethontimorphae (sunbittern and tropicbirds; but 100% in
other analyses); 5) the hoatzin; and 6) the owl among core landbiigigifficult to infer fromthe tree

whether the common ancestor of Neoaves was aquatic or terrestrial, since the number of divergences after
the Columbea and Passerea split and thereby also after the Neognathae split to obtain an aquatic or semi
aqguaticversus terrestrial specieeanearly equalEnglish species names are listed, as well the names of
families (idae), following the Howard & Moore edition 4 classificati@®6), for orders that we dated to

have diverged before 50 MYA. This leaves open the possibility that clades within Accipitriformes (the
Accipitridae and Cathartidae families), Pelicaniformes (the Pelecanidae, Ardeidae, Threskiornithidae, and
Phalacrocoracidae families), and Caprimulgiformes (the Trochilidae+Apodidae and Caprimulgidae
families) could be raised or-gesignated ordinal statshould future evidence support these findings.

This tree was generated using ExaML (SM4) and dated using a Bayesian approach with fossil calibrations
(SM12).
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Fig. S2.Metatable analysis of species trees expanddedgure explanation is the same as ia tegend

of Figure 2. This table has additional control results from partitioned ExaML, unbinndgdSWPand

Exon codon tree analyselsetters (ADD, ae) denote clade nodes highlighted in Figure 3A,B of the
ExaML and MRPEST* TENT trees. Each column repeess a species tree; each row represents a potential
clade. Bluegreen signifies the monophyly of a clade, and shades show the level of its bootstrap support
(0-100%); red, rejection of a clade; white, missing data. We used a 95%, instead of a standana 75%

off for strong rejection due to higher support values with genome scale data. The threshold for the
mitochondrial study was set to 99% due to Bayesian posterior probabilities yielding higher values than
BS. The methods used to generate the rabkaanalyses is in SM7.
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